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Abstract  
In a text-to-speech system, a transcription of each word can be either retrieved from the 
dictionary, or generated by rules or some statistical means. Though the dictionary-based 
approach can produce the most accurate result, a letter-to-sound conversion module is still 
necessary for unknown words. This study focuses on producing a module that can 
automatically transcribe English words into Thai sounds. To do this, 18,690 samples of 
English words are extracted from the CMU pronunciation dictionary. These samples are 
classified into different groups. Each group is used for extracting mapping rules for each 
Thai sound. A machine learning algorithm is implemented to extract conversion rules from 
these samples. These rules map English letter(s) into a corresponding Thai sound in a 
specified context. In other words, conversion rules are context sensitive rules, of which the 
maximum left and right contexts are two letters. Conversion rules are implemented as lookup 
tables like those of Bosch and Daelemans’ (1993). Rules extracted by the algorithm are 
manually examined and grouped together to make them more generalized. As a result, the 
number of rules is reduced from 4,120 to 440 rules.  

In addition, since Thai syllable structures are different from that of English, 
phoneme sequences produced by the conversion rules have to be adjusted to comply with 
the Thai phonological system. Phoneme sequences that are not possible in Thai will be 
changed, deleted, or split into syllables with respect to the Thai syllable structures. Tones 
are also assigned to each syllable. Because this grapheme-to-phoneme module is going to 
be used for generating transcriptions of English words that are not in the dictionary, the 
module is tested on 1,475 English proper names. The results were judged in terms of 
degrees of acceptability, adopted from Coker et al.(1990), namely “good”, “fair”, and 
“poor”,. “Good” means the transcription is what the judge would have said. “Fair” means 
the transcription sounds all right even the judge would not have said it that way. “Poor” 
means the transcription sounds bad; no one would have said it. The module can produce 
the output that is acceptable (fair or good) at the rate of 44%. Though the accuracy rate is 
not very high, the module is sufficient for generating transcriptions of unknown words.  

Introduction  
In a text-to-speech system, transcriptions of texts have to be produced by some means. The 
transcriptions can be generated by letter-to-sound conversion rules, which can be manually 
written (e.g. Chotimongkol and Black 2000) or automatically extracted from training data 
(e.g. Bosch and Daelemans 1993). Or they can be generated by using statistical models of 
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grapheme-to-phoneme conversion (e.g. Tarsaku et al. 2001). With this statistical method, the 
transcription is the phoneme sequence which has the highest probability. The transcriptions 
could also be retrieved from a dictionary, in which transcription of each word is manually 
stored in the dictionary (e.g. Luksaneeyanawin 1989). Though the dictionary-based approach 
takes longer time to be developed and uses more system resources, it is usually the most 
accurate one. Nevertheless, it still has to face with unknown word problems, especially for 
those proper names. Thus, even in a dictionary-based text-to-speech system, there must be a 
module to handle unknown words.  

Since English words are often found within the Thai างกันระหว texts, e.g. 
“ความแตกตนน้ัางบริษทรถยนตั Chrysler และ General Motors โดยพื้วเปนฐาน 
แลนมายาภาพ”, a Thai text-to-speech system has to produce not only transcriptions of 
Thai texts, but also transcriptions of English words. It is possible to use an existing English 
text-to-speech system to handle only those English words, while a Thai text-to-speech 
system is used for Thai words. But the speech produced by this method might sound 
unnatural because users would not expect to hear an English accent mixed within Thai 
speeches. A more natural solution is to produce transcriptions of English words on the 
basis of Thai phonological system. In this study, we aim to build a grapheme-to-phoneme 
conversion module that automatically transcribes English words into Thai sounds.  

Transcriptions of English and Thai  
Our Thai text-to-speech system, CU-TTS, is mainly a dictionary-based system. 
Transcriptions of Thai and English words are manually stored in the dictionary. 
Transcriptions of both English and Thai are based on the Thai phonological system. But 
some phonemes like /s/, /f/, /l/, /ch/ are allowed as possible final consonants. Transcriptions 
of most words would be retrieved from the dictionary. Only transcriptions of words that are 
not included in the dictionary will be generated by rules. To handle unseen English words, an 
English grapheme-to-phoneme system is developed. The system here is different from other 
English grapheme-to-phoneme systems because the transcriptions produced by our system 
are Thai transcriptions, not English transcriptions. For example, the word “bird” will be 
pronounced /bəət3/ rather than /’bɜd/.  

Since the set of English phonemes are different from Thais, we have to map 
English phonemes to corresponding Thai phonemes. English transcriptions that already 
coded in the Carnegie Mellon University Pronouncing Dictionary are used as the basis of 
English phonemes in this study. (The CMU Dictionary is a machine-readable 
pronunciation dictionary for North American English that contains over 125,000 words and 
their transcriptions.) In CMU dictionary, 39 phonemes are used for coding the English 
transcription (not counting variation for lexical stress). Vowels may carry lexical stress, 
marked with the number 0-2. (0 = No stress, 1 = Primary stress, 2 = Secondary stress) For 
example, the word “homework” is transcribed as /HH OW1 M W ER2 K/, “coordinate”as 
/K OW0 AO1 D IH0 N EY2 T/. Table 1 shows the mapping of English phonemes to Thai 
phonemes. The second column represents the CMU code for English phonemes. The third 
column, “IPA”, is the IPA symbols of that English phoneme.  

The next column, “Thai Pronunciation”, is the corresponding Thai phoneme. For 
some phonemes, a phoneme with or without stress may map to different phonemes in Thai. 
For example, AA0 (unstressed /ɔ/) maps to /ɔ/ in Thai, while AA1 (stressed /ɔ/) maps to 
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/aa/ in Thai. Some phonemes, such as B, D, T, map to two different Thai phonemes 
according to its position in the syllable structure (as an initial or final consonant).  

 
Table 1: Mapping between English and Thai phonemes  
 

Phoneme # CMU IPA Thai Pronunciation Example 

1 AA0 ɔ ɔ Cod 
 AA1 ɑ� aa Heart 
2 AE æ ɛ Bad 
3 AH0 ə ə About 
 AH1 ʌ a Bud 
4 AO ɔ� ɔɔ Cord 
5 AW au aw Cow 
6 AY ai aj Eye 
7 EH e e Bed 
 EH0 (R) æ� ɛɛ Bare 
8 ER ɜ əə Bird 
9 EY e� ee Day 
10 IH ɪ i Bid 
 IH0 (R) ia ia Beer 
11 IY i� ii Bead 
12 OW o� oo Go 
13 OY ɔi ɔj Boy 
14 UH ʊ u Good 
 UH0 ua uua Tour 
15 UW u uu Food 
16 B b #b, p# Be, Cab 
17 CH tʃ ch Etch 
18 D d #d, t# Dog, Mad 
19 DH ð th Then 
20 F f f Fee 
21 G g k Green 
22 HH h h He 
23 JH dʒ c Edge 
24 K k kh, k Key, Wok 
25 L l l Lab 
26 M m m Me 
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27 N n n No 
28 NG ŋ ŋ Sing 
19 DH ð th Then 
29 P p ph, p Put, Cap 
30 R r r Read 
31 S s s Sea 
32 SH ʃ ch Shed 
33 T t th, t Tea, Sit 
34 TH Ɵ th Thin 
35 V v w Van 
36 W w w Way 
37 Y j j Yard 
38 Z z s Zoo 
39 ZH ʒ ch Beige 

 
A transcription of every word in the English dictionary then is manually coded 

using Thai phonemes. The transcription is syllable-segmented and tone-assigned. More 
than 100,000 words are stored in our English dictionary. Although the process of 
compiling this English dictionary is time-consuming, it would yield the most accurate 
transcriptions. When our Thai text-to-speech system processes English words, it will 
retrieve Thai transcriptions of those words from the dictionary. However, the dictionary 
cannot contain all possible words, especially for those proper names. A module to convert 
English words to Thai transcriptions is still necessary for the system.  

Grapheme-to-phoneme Conversion  
Grapheme-to-phoneme conversion is a necessary part of any text-to-speech systems. Various 
approaches have been proposed. It could be a dictionary-based, a rule-based, a statistical 
based, or a hybrid one. In a rule-based system, letter-to-sound conversion rules can be 
constructed by hand or derived by a machine. In a statistical based system, a corpus of word-
transcription is used for training. Probability of mapping each character to its corresponding 
phoneme is estimated from this training corpus. The system will use this statistical 
information to select the transcription with the highest probability. Most of current systems 
are statistical basis because it is easier to construct and maintain the systems. In addition, the 
systems do not depend on a specific language as the rule-based systems do. They can be used 
for any languages as long as an appropriate training corpus is given. Nevertheless, the rule-
based systems usually have an advantage in terms of processing speed.  

In our Thai text-to-speech system, since most of the transcriptions are in the 
dictionary, we do not need the grapheme-to-phoneme conversion module to transcribe all 
words. The module we need will be used to generate transcriptions of a few unknown 
words. Thus, we do not want a module to be complicated and take much processing time. 
In this study, we adapted Bosch and Daelemans’ (1993) data-oriented rule based 
grapheme-to-phoneme conversion system. Bosch and Daelemans used a training corpus 
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which contains pairs of words and transcriptions. In each pair, each character is aligned 
with its corresponding sound. A learning algorithm will read this corpus and generate 
context-sensitive letter-to-sound conversion rules. Bosch and Daelemans set the maximum 
context to be five characters on the left and on the right. For example, in Dutch, when the 
pair “s|c|h|o|e|n|e|n”-/s|x|#|u|#|n|#|ɔ|#/ is found, rules like s|c|ho -> /x/, sc|h|oen -> #, etc., 
will be generated. (The symbol # is used for phonetic null. It means no sound is generated 
from the mapping.) The letter in between | | is the one that maps to the specified sound. 
Letters before and after | are those left and right contexts. Rules will cease to exist if it 
conflicts with new data. (The same character in the identical context maps to a different 
sound.) Thus, rules are not ambiguous. At the end, rules with different contexts sizes are 
stored in different lookup tables. For example, Table r:0-1-1 is the collection of mapping 
rules when considering only one character on the right; Table r:2-1-3 is the collection of 
mapping rules when considering two characters on the left and three characters on the 
right. Probabilistic rules are also generated from the training data, e.g. a +> /aa/. (The 
symbol +> is used for probabilistic mapping rules.) Probabilistic rules are chosen from the 
most frequent mapping of that character. These probabilistic rules will be used when no 
rules can map the input character. Bosch and Daelemans (1993) randomly selected 18,500 
word-pronunciation pairs as the training data for Dutch, and for English. The lookup tables 
created from the training data contains 27,000 rules or patterns for Ducth, and 35,000 
patterns for English.  

In our system, since we already built a dictionary which contains pairs of English 
words and Thai transcriptions, we could use these data as a training set. But, we would 
need to do the alignment between letters and sounds first. Doing that would be very time-
consuming. Since we only need a small module for processing unseen words, we build 
lookup tables in a much quicker way by using training data that is different from that of 
Bosch and Daelemans. Because we expect the difficulties of mapping from English 
characters to Thai sounds are mainly caused from vowels, we randomly selected pairs of 
words and transcriptions as representatives of each vowel. Table 2 shows the number of 
words selected for training each vowel pattern. There are totally 20 data sets. For each pair, 
we only mark characters that map to the selected vowel in that data set. For example, since 
the character “e” in “payment” is mapped to /e/, this word will be marked as “paym(e)nt”. 
Thus, training data for the sound /e/ will be like “paym(e)nt”, “pass(a)ge”, “overh(ea)d”, 
etc. Then, a learning algorithm will be used to create mapping rules of that vowel. The 
program will create mapping rules with different contexts, such as m|e|n -> /e/, ym|e|nt -> 
/e/, etc. In this study, we set the maximum contexts to be two characters. Only 7 lookup 
tables and 2 probabilistic mapping tables are used in this study, namely r:0-1-0, r:0-1-1, 
r:1-1-0, r:1-1-1, r:2-1-0, r:0-1-2, r:2-1-2, g:0-1-0, and g:1-1-1. Table r:x-1-y stands for 
lookup table in which x characters on the left and z characters on the right are taken into 
account, and g:x-1-y stands for probabilistic mapping when considering x characters on the 
left and y characters on the right.  
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Table 2: Number of training words for each vowel.  
 

CMU  IPA Thai Pronunciation No. of data 
AA0  ɔ  ɔ  485  
AA1,AA2  ɑː  aa  902  
AE  æ  ɛ  970  
AH0  ə  ə  2082  
AH1  ʌ  a  439  
AO  ɔː  ɔɔ  1167  
AW  au  aw  291  
AY  ai  aj  285  
EH  e  e  1567  
EH0 (R)  æː  ɛɛ  82  
ER  ɜ  əə  1915  
EY  eː  ee  761  
IH  ɪ  i  1610  
IH0 (R)  ia  ia  220  
IY  iː  ii  1397  
OW  oː  oo  4182  
OY  ɔi  ɔj  46  
UH  ʊ  u  76  
UH0  ua  uua  17  
UW  u  uu  196  

 
To reduce the number of rules and ensure that rules are not accidental, we select 

only rules or patterns that occur more than once in the training data. There are 4,120 rules 
at this step (step-1). Next, we delete rules that could also be produced by the default 
mappings (probabilistic rules g:0-1-0). For example, since the default mapping of the letter 
“a” is /ɛ/, we can safely delete all rules that map “a” to /ɛ/ in all lookup tables. After 
deleting rules that have the same output as the default mapping of “a”, “e”, “i”, “o”, “u” 
(step-2), the number of rules reduces to 2,549 patterns. At this point, we only have 
mapping rules for vowels. Thus, we manually add 62 default mapping rules for consonant 
letters (not a,e,i,o,u) (step-3). Then, we delete rules that are redundant. These are mapping 
rules that produce the same sound as the probabilistic mapping rules g:1-1-1 (step-4). For 
example, if we have r|i|l +> /i/, we could delete rules like rr|i|ll -> /i/, er|i|ll -> /i/, etc. At 
this step, the number of rules reduces to 1,548 patterns. After that, rules are manually 
deleted, or modified to reflect the generalization as much as possible (step-5). Special 
symbols, C, V, and X are used to represent groups of consonant letters, vowel letters, and 
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any letters respectively. The final outcome contains 440 patterns for mapping (including 
probabilistic mapping).  

These mapping rules will be used by a grapheme-to-phoneme module. The module 
will try rules in the mapping tables in the following order: r:2-1-2, r:2-1-0, r:0-1-2, r:1-1-1, 
r:1-1-0, r:0-1-1, r:0-1-0, g:1-1-1, and g:0-1-0. Each character in the unknown word will be 
mapped to a corresponding sound, with respect to the patterns. Since we did not create the 
mapping rules for consonants in the same way as we did with vowels (by learning from 
training data), it is possible that the output might have a cluster that is not possible for 
Thai, such as “st”, “bj”, “nj”, “mj”, etc. For example, the program will map the word “star” 
to /sthaa/ by using the following rules s+>/s/, t+>/th/, C|a|r+>/aa/, V|r|^ -> #. (The symbol 
“^” is used for indicating word boundary.) But this phoneme output is not Thai 
pronunciation. Thus, the program has to readjust sound sequence by means of deletion, 
insertion, or modification. In this example, /sthaa/ is changed to /sa taa/. Then, each 
syllable will be assigned tones. (The numbers 0-4 are used for mid, low, falling, high, and 
rising tones respectively.)  

From the Thai transcriptions encoded in the English dictionary, we tried to extract 
tone patterns of words with different number of syllables, e.g. 2-syllable words, 3-syllable 
words, etc. But there seem to be no unique tone sequence for each word type. For example, 
for 2-syllable words, the tone sequence can be 00 (“begin”-/bii0 kin0/), 01 (“import”-/?im0 
pɔɔt1/), 02 (“bonny”-/bɔɔn0 nii2/), 03 (“aircraft”-/?ɛɛ0 craaf3/), 10 (“smile”-/sa1 maaj0/), 
11 (“bishop”-/bi1 chɔɔp1/), 12 (“fader”-/feet1 dəə2/, 20 (“vietnam”-/wiiat2 naam0/, 21 
(“weirdness”-/wiiat2 nees1/, 30 (“workday”-/wəək3 dee0/), 31 (“abbot”-/?ɛp3 bot1/), 32 
(“beatle”-/bii3 thəl2/), 33 (“accept”-/?ɛk3 sep3/, etc. However, we create rules of tone 
assignment by frequency of occurrences. Tone patterns that occur most often are used as 
the default one. By doing this, though the program cannot assign correct tones to all words, 
the tone assigned should be acceptable for a large number of words. The following is the 
tone assignment rule for 2-syllable words.  

 
Live + Live & Short vowel => 0 2 
Live + Live & Long vowel => 0 0 
Live + Dead & Short vowel => 0 1 
Live + Dead & Long vowel => 0 2 
Dead + Live => 3 2 
Dead + Dead & Short vowel => 3 1 
Dead + Dead & Long vowel =>3 2 
 
There are seven tone patterns for 2-syllable words. Tones are assigned on the basis 

of live/dead syllables and short/long vowels. A syllable is a dead one if it ends with one of 
the following sounds, /p/, /t/, /k/, /f/, /s/, /ch/; or it ends with a short vowel. A syllable is a 
live syllable if it ends with the following sound /m/, /n/, /ŋ/, /w/, /j/, /l/; or it ends with a 
long vowel. For example, if the first syllable is a live syllable, its tone will be 0. If the next 
syllable is also a live one with short vowel, the tone will be 2. Tone assignment rules for 3 
or 4syllable words are also created in the similar way.  
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Experiments  
Since the English grapheme-to-phoneme module is designed to generate Thai transcriptions 
of any unknown words, which are usually proper names, the module is tested on 1,475 
English proper names. The transcription output is expected to be fairly acceptable rather than 
perfect. Therefore, we evaluate the performance of the module by judging the results in 
terms of degrees of acceptability, adapted from Coker et al.(1990), namely “good”, “fair”, 
and “poor”. The label “good” means the transcription is what the judge would have said. 
“Fair” means the transcription sounds all right even the judge would not have said it that 
way. “Poor” means the transcription sounds bad; no one would have said it. A graduate 
student in the Linguistics program is asked to judge the result using this scale. For example, 
the transcription /?ɛɛ0 leek1 sɛɛn0 driia2/ generated for the word “Alexandria” was judged as 
“poor”; /khris3 thii2/ generated for “Christie” was judged as “fair”; /baa0 baa0 raa2/ 
generated for “Barbara” was judged as “good”. Table 3 shows the number of items judged.  

 
Table 3: The result of judgment  
 
 Good  417  28.27%  
 Fair  237  16.07%  
 Poor  821  55.66%  
 Total  1475  100.00%  
 

It can be seen from Table 3 that 44% of the outputs are acceptable (fair or good). 
But 56% are not acceptable. Since generating appropriate tones is a difficult task and we 
want to evaluate the letter-to-sound conversion rules, the judge was asked to re-evaluate 
the result again by ignoring tones. The result from this judgment would better reflect the 
performance of the English grapheme-to-phoneme module. The result is shown in Table 4.  

Table 4 shows that the result is a bit better. The number of acceptable phoneme 
sequences is up to 55%, while the number of unacceptable is 45%. Though the accuracy is 
not up to the level of 80% as reported in other systems, the module is sufficient to the task 
in this study, given that pronunciations of 44% of unseen words are acceptable, and the 
rests are at least Thai pronunciations.  

 
Table 4: The result of judgment when ignoring tones  

 
 Good  537  36.41%  
 Fair  278  18.85%  
 Poor  660  44.75%  
 Total  1475  100.00%  

Discussion  
This study has demonstrated a quick and easy way to create a grapheme-to-phoneme 
conversion system. Instead of using a corpus which is fully aligned between characters and 
sounds, we prepared training data only on the difficult mappings, which are vowels in this 
study. Alignment is marked only for characters that produce those vowel sounds. Letter-to-
sound conversion rules then are automatically generated by a machine. Rule patterns 
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generated from the machine can immediately be used by the conversion program. However, 
we chose to manually collapse rules by hand since we want the module to be very small. 
Compared to previous research on English grapheme-to-phoneme conversion, which has the 
number of rules up to 35,000 patterns (Bosch and Daelemans 1993), the number of rules in 
this study is only 440 patterns. Though the accuracy of the module is not high, it is sufficient 
to the task. Because most of English words’ transcriptions are already stored in the 
dictionary, we only want the module to generate Thai transcriptions for a few unknown 
words. These words are expected to be at least pronounceable in Thai. And if the 
pronunciation really sounds bad, users can add the correct pronunciation in the user 
dictionary.  
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Appendix : Examples of the result  
 

Word  Transcription  Judgment1 Judgment2 (ignore tone)  

Abraham  ʔɛɛ0^brɛɛ0^hɛɛm2^  poor  poor  
Ackworth  ʔɛk3^khwɔɔt1^  good  good  
Adam  ʔaa0^daam0^  good  good  
Alan  ʔaa0^lɛɛn0^  good  good  
Alexander  ʔaa0^leek1^sɛɛn0^dəə2^ fair  good  
Alfred  ʔɛɛl0^freet1^  good  good  
Baker  bee0^khəə0^  fair  good  
Baldwin  bɔɔl0^wiin0^  fair  good  
Blackwell  blɛk3^khweel2^  poor  poor  
Buckingham  bak3^khiŋ0^hɛɛm2^  fair  good  
Cameron  khee0^məə0^roon2^  fair  fair  
Campbell  khɛɛm0^beel0^  good  good  
Christie  khris3^thii2^  fair  fair  
Christina  khris3^thii0^naa2^  good  good  
Dennis  deen0^nis1^  good  good  
Duncan  duun0^khɛɛn0^  poor  poor  
Edmund  ʔeet3^muun2^  fair  fair  
Edward  ʔeet3^wɔɔt1^  poor  poor  
Fabian  fɛɛ0^biian0^  good  good  
Fleetwood  fliit3^wuut1^  fair  good  
Fleming  flee0^miŋ2^  fair  fair  
Fortune  fɔɔ0^thuun0^  good  good  
Geoffrey  cii0^ʔaa0^ʔoof3^free2^  poor  poor  
Gifford  kif3^fɔɔt1^  good  good  
Gilbert  kiil0^bəət1^  good  good  
Harris  haa0^ris1^  poor  poor  
Harte  haa0^thee0^  poor  poor  
Harvard  haa0^waat1^  good  good  
Mary  maa0^rii0^  poor  poor  
Obson  ʔoop3^saan2^  poor  poor  

 


