

Wilaiwan Khanittanan & Paul Sidwell, eds. SEALSXIV: papers from the 14th meeting of the Southeast Asian
Linguistics Society (2004), Volume 1. Canberra, Pacific Linguistics, 2008, pp.13-22.
© Wirote Aroonmanakun, Nuttakorn Thapthong, Pakaket Wattuya, Benjawan Kasisopa, & Sudaporn
Luksaneeyanawin

GENERATING THAI TRANSCRIPTIONS
FOR ENGLISH WORDS

Wirote Aroonmanakun,
Nuttakorn Thapthong, Pakaket Wattuya,

Benjawan Kasisopa, and Sudaporn Luksaneeyanawin
Centre for Research in Speech and Language Processing,

Chulalongkorn University
<awirote@chula.ac.th>

Abstract
In a text-to-speech system, a transcription of each word can be either retrieved from the
dictionary, or generated by rules or some statistical means. Though the dictionary-based
approach can produce the most accurate result, a letter-to-sound conversion module is still
necessary for unknown words. This study focuses on producing a module that can
automatically transcribe English words into Thai sounds. To do this, 18,690 samples of
English words are extracted from the CMU pronunciation dictionary. These samples are
classified into different groups. Each group is used for extracting mapping rules for each
Thai sound. A machine learning algorithm is implemented to extract conversion rules from
these samples. These rules map English letter(s) into a corresponding Thai sound in a
specified context. In other words, conversion rules are context sensitive rules, of which the
maximum left and right contexts are two letters. Conversion rules are implemented as lookup
tables like those of Bosch and Daelemans’ (1993). Rules extracted by the algorithm are
manually examined and grouped together to make them more generalized. As a result, the
number of rules is reduced from 4,120 to 440 rules.

In addition, since Thai syllable structures are different from that of English,
phoneme sequences produced by the conversion rules have to be adjusted to comply with
the Thai phonological system. Phoneme sequences that are not possible in Thai will be
changed, deleted, or split into syllables with respect to the Thai syllable structures. Tones
are also assigned to each syllable. Because this grapheme-to-phoneme module is going to
be used for generating transcriptions of English words that are not in the dictionary, the
module is tested on 1,475 English proper names. The results were judged in terms of
degrees of acceptability, adopted from Coker et al.(1990), namely “good”, “fair”, and
“poor”,. “Good” means the transcription is what the judge would have said. “Fair” means
the transcription sounds all right even the judge would not have said it that way. “Poor”
means the transcription sounds bad; no one would have said it. The module can produce
the output that is acceptable (fair or good) at the rate of 44%. Though the accuracy rate is
not very high, the module is sufficient for generating transcriptions of unknown words.

Introduction
In a text-to-speech system, transcriptions of texts have to be produced by some means. The
transcriptions can be generated by letter-to-sound conversion rules, which can be manually
written (e.g. Chotimongkol and Black 2000) or automatically extracted from training data
(e.g. Bosch and Daelemans 1993). Or they can be generated by using statistical models of

14 Wirote Aroonmanakun et al.

grapheme-to-phoneme conversion (e.g. Tarsaku et al. 2001). With this statistical method, the
transcription is the phoneme sequence which has the highest probability. The transcriptions
could also be retrieved from a dictionary, in which transcription of each word is manually
stored in the dictionary (e.g. Luksaneeyanawin 1989). Though the dictionary-based approach
takes longer time to be developed and uses more system resources, it is usually the most
accurate one. Nevertheless, it still has to face with unknown word problems, especially for
those proper names. Thus, even in a dictionary-based text-to-speech system, there must be a
module to handle unknown words.

Since English words are often found within the Thai างกันระหว texts, e.g.
“ความแตกตนน้ัางบริษทรถยนตั Chrysler และ General Motors โดยพื้วเปนฐาน
แลนมายาภาพ”, a Thai text-to-speech system has to produce not only transcriptions of
Thai texts, but also transcriptions of English words. It is possible to use an existing English
text-to-speech system to handle only those English words, while a Thai text-to-speech
system is used for Thai words. But the speech produced by this method might sound
unnatural because users would not expect to hear an English accent mixed within Thai
speeches. A more natural solution is to produce transcriptions of English words on the
basis of Thai phonological system. In this study, we aim to build a grapheme-to-phoneme
conversion module that automatically transcribes English words into Thai sounds.

Transcriptions of English and Thai
Our Thai text-to-speech system, CU-TTS, is mainly a dictionary-based system.
Transcriptions of Thai and English words are manually stored in the dictionary.
Transcriptions of both English and Thai are based on the Thai phonological system. But
some phonemes like /s/, /f/, /l/, /ch/ are allowed as possible final consonants. Transcriptions
of most words would be retrieved from the dictionary. Only transcriptions of words that are
not included in the dictionary will be generated by rules. To handle unseen English words, an
English grapheme-to-phoneme system is developed. The system here is different from other
English grapheme-to-phoneme systems because the transcriptions produced by our system
are Thai transcriptions, not English transcriptions. For example, the word “bird” will be
pronounced /bəət3/ rather than /’bɜd/.

Since the set of English phonemes are different from Thais, we have to map
English phonemes to corresponding Thai phonemes. English transcriptions that already
coded in the Carnegie Mellon University Pronouncing Dictionary are used as the basis of
English phonemes in this study. (The CMU Dictionary is a machine-readable
pronunciation dictionary for North American English that contains over 125,000 words and
their transcriptions.) In CMU dictionary, 39 phonemes are used for coding the English
transcription (not counting variation for lexical stress). Vowels may carry lexical stress,
marked with the number 0-2. (0 = No stress, 1 = Primary stress, 2 = Secondary stress) For
example, the word “homework” is transcribed as /HH OW1 M W ER2 K/, “coordinate”as
/K OW0 AO1 D IH0 N EY2 T/. Table 1 shows the mapping of English phonemes to Thai
phonemes. The second column represents the CMU code for English phonemes. The third
column, “IPA”, is the IPA symbols of that English phoneme.

The next column, “Thai Pronunciation”, is the corresponding Thai phoneme. For
some phonemes, a phoneme with or without stress may map to different phonemes in Thai.
For example, AA0 (unstressed /ɔ/) maps to /ɔ/ in Thai, while AA1 (stressed /ɔ/) maps to

Thai transcriptions for English words 15

/aa/ in Thai. Some phonemes, such as B, D, T, map to two different Thai phonemes
according to its position in the syllable structure (as an initial or final consonant).

Table 1: Mapping between English and Thai phonemes

Phoneme # CMU IPA Thai Pronunciation Example

1 AA0 ɔ ɔ Cod
 AA1 ɑ� aa Heart
2 AE æ ɛ Bad
3 AH0 ə ə About
 AH1 ʌ a Bud
4 AO ɔ� ɔɔ Cord
5 AW au aw Cow
6 AY ai aj Eye
7 EH e e Bed
 EH0 (R) æ� ɛɛ Bare
8 ER ɜ əə Bird
9 EY e� ee Day
10 IH ɪ i Bid
 IH0 (R) ia ia Beer
11 IY i� ii Bead
12 OW o� oo Go
13 OY ɔi ɔj Boy
14 UH ʊ u Good
 UH0 ua uua Tour
15 UW u uu Food
16 B b #b, p# Be, Cab
17 CH tʃ ch Etch
18 D d #d, t# Dog, Mad
19 DH ð th Then
20 F f f Fee
21 G g k Green
22 HH h h He
23 JH dʒ c Edge
24 K k kh, k Key, Wok
25 L l l Lab
26 M m m Me

16 Wirote Aroonmanakun et al.

27 N n n No
28 NG ŋ ŋ Sing
19 DH ð th Then
29 P p ph, p Put, Cap
30 R r r Read
31 S s s Sea
32 SH ʃ ch Shed
33 T t th, t Tea, Sit
34 TH Ɵ th Thin
35 V v w Van
36 W w w Way
37 Y j j Yard
38 Z z s Zoo
39 ZH ʒ ch Beige

A transcription of every word in the English dictionary then is manually coded

using Thai phonemes. The transcription is syllable-segmented and tone-assigned. More
than 100,000 words are stored in our English dictionary. Although the process of
compiling this English dictionary is time-consuming, it would yield the most accurate
transcriptions. When our Thai text-to-speech system processes English words, it will
retrieve Thai transcriptions of those words from the dictionary. However, the dictionary
cannot contain all possible words, especially for those proper names. A module to convert
English words to Thai transcriptions is still necessary for the system.

Grapheme-to-phoneme Conversion
Grapheme-to-phoneme conversion is a necessary part of any text-to-speech systems. Various
approaches have been proposed. It could be a dictionary-based, a rule-based, a statistical
based, or a hybrid one. In a rule-based system, letter-to-sound conversion rules can be
constructed by hand or derived by a machine. In a statistical based system, a corpus of word-
transcription is used for training. Probability of mapping each character to its corresponding
phoneme is estimated from this training corpus. The system will use this statistical
information to select the transcription with the highest probability. Most of current systems
are statistical basis because it is easier to construct and maintain the systems. In addition, the
systems do not depend on a specific language as the rule-based systems do. They can be used
for any languages as long as an appropriate training corpus is given. Nevertheless, the rule-
based systems usually have an advantage in terms of processing speed.

In our Thai text-to-speech system, since most of the transcriptions are in the
dictionary, we do not need the grapheme-to-phoneme conversion module to transcribe all
words. The module we need will be used to generate transcriptions of a few unknown
words. Thus, we do not want a module to be complicated and take much processing time.
In this study, we adapted Bosch and Daelemans’ (1993) data-oriented rule based
grapheme-to-phoneme conversion system. Bosch and Daelemans used a training corpus

Thai transcriptions for English words 17

which contains pairs of words and transcriptions. In each pair, each character is aligned
with its corresponding sound. A learning algorithm will read this corpus and generate
context-sensitive letter-to-sound conversion rules. Bosch and Daelemans set the maximum
context to be five characters on the left and on the right. For example, in Dutch, when the
pair “s|c|h|o|e|n|e|n”-/s|x|#|u|#|n|#|ɔ|#/ is found, rules like s|c|ho -> /x/, sc|h|oen -> #, etc.,
will be generated. (The symbol # is used for phonetic null. It means no sound is generated
from the mapping.) The letter in between | | is the one that maps to the specified sound.
Letters before and after | are those left and right contexts. Rules will cease to exist if it
conflicts with new data. (The same character in the identical context maps to a different
sound.) Thus, rules are not ambiguous. At the end, rules with different contexts sizes are
stored in different lookup tables. For example, Table r:0-1-1 is the collection of mapping
rules when considering only one character on the right; Table r:2-1-3 is the collection of
mapping rules when considering two characters on the left and three characters on the
right. Probabilistic rules are also generated from the training data, e.g. a +> /aa/. (The
symbol +> is used for probabilistic mapping rules.) Probabilistic rules are chosen from the
most frequent mapping of that character. These probabilistic rules will be used when no
rules can map the input character. Bosch and Daelemans (1993) randomly selected 18,500
word-pronunciation pairs as the training data for Dutch, and for English. The lookup tables
created from the training data contains 27,000 rules or patterns for Ducth, and 35,000
patterns for English.

In our system, since we already built a dictionary which contains pairs of English
words and Thai transcriptions, we could use these data as a training set. But, we would
need to do the alignment between letters and sounds first. Doing that would be very time-
consuming. Since we only need a small module for processing unseen words, we build
lookup tables in a much quicker way by using training data that is different from that of
Bosch and Daelemans. Because we expect the difficulties of mapping from English
characters to Thai sounds are mainly caused from vowels, we randomly selected pairs of
words and transcriptions as representatives of each vowel. Table 2 shows the number of
words selected for training each vowel pattern. There are totally 20 data sets. For each pair,
we only mark characters that map to the selected vowel in that data set. For example, since
the character “e” in “payment” is mapped to /e/, this word will be marked as “paym(e)nt”.
Thus, training data for the sound /e/ will be like “paym(e)nt”, “pass(a)ge”, “overh(ea)d”,
etc. Then, a learning algorithm will be used to create mapping rules of that vowel. The
program will create mapping rules with different contexts, such as m|e|n -> /e/, ym|e|nt ->
/e/, etc. In this study, we set the maximum contexts to be two characters. Only 7 lookup
tables and 2 probabilistic mapping tables are used in this study, namely r:0-1-0, r:0-1-1,
r:1-1-0, r:1-1-1, r:2-1-0, r:0-1-2, r:2-1-2, g:0-1-0, and g:1-1-1. Table r:x-1-y stands for
lookup table in which x characters on the left and z characters on the right are taken into
account, and g:x-1-y stands for probabilistic mapping when considering x characters on the
left and y characters on the right.

18 Wirote Aroonmanakun et al.

Table 2: Number of training words for each vowel.

CMU IPA Thai Pronunciation No. of data
AA0 ɔ ɔ 485
AA1,AA2 ɑː aa 902
AE æ ɛ 970
AH0 ə ə 2082
AH1 ʌ a 439
AO ɔː ɔɔ 1167
AW au aw 291
AY ai aj 285
EH e e 1567
EH0 (R) æː ɛɛ 82
ER ɜ əə 1915
EY eː ee 761
IH ɪ i 1610
IH0 (R) ia ia 220
IY iː ii 1397
OW oː oo 4182
OY ɔi ɔj 46
UH ʊ u 76
UH0 ua uua 17
UW u uu 196

To reduce the number of rules and ensure that rules are not accidental, we select

only rules or patterns that occur more than once in the training data. There are 4,120 rules
at this step (step-1). Next, we delete rules that could also be produced by the default
mappings (probabilistic rules g:0-1-0). For example, since the default mapping of the letter
“a” is /ɛ/, we can safely delete all rules that map “a” to /ɛ/ in all lookup tables. After
deleting rules that have the same output as the default mapping of “a”, “e”, “i”, “o”, “u”
(step-2), the number of rules reduces to 2,549 patterns. At this point, we only have
mapping rules for vowels. Thus, we manually add 62 default mapping rules for consonant
letters (not a,e,i,o,u) (step-3). Then, we delete rules that are redundant. These are mapping
rules that produce the same sound as the probabilistic mapping rules g:1-1-1 (step-4). For
example, if we have r|i|l +> /i/, we could delete rules like rr|i|ll -> /i/, er|i|ll -> /i/, etc. At
this step, the number of rules reduces to 1,548 patterns. After that, rules are manually
deleted, or modified to reflect the generalization as much as possible (step-5). Special
symbols, C, V, and X are used to represent groups of consonant letters, vowel letters, and

Thai transcriptions for English words 19

any letters respectively. The final outcome contains 440 patterns for mapping (including
probabilistic mapping).

These mapping rules will be used by a grapheme-to-phoneme module. The module
will try rules in the mapping tables in the following order: r:2-1-2, r:2-1-0, r:0-1-2, r:1-1-1,
r:1-1-0, r:0-1-1, r:0-1-0, g:1-1-1, and g:0-1-0. Each character in the unknown word will be
mapped to a corresponding sound, with respect to the patterns. Since we did not create the
mapping rules for consonants in the same way as we did with vowels (by learning from
training data), it is possible that the output might have a cluster that is not possible for
Thai, such as “st”, “bj”, “nj”, “mj”, etc. For example, the program will map the word “star”
to /sthaa/ by using the following rules s+>/s/, t+>/th/, C|a|r+>/aa/, V|r|^ -> #. (The symbol
“^” is used for indicating word boundary.) But this phoneme output is not Thai
pronunciation. Thus, the program has to readjust sound sequence by means of deletion,
insertion, or modification. In this example, /sthaa/ is changed to /sa taa/. Then, each
syllable will be assigned tones. (The numbers 0-4 are used for mid, low, falling, high, and
rising tones respectively.)

From the Thai transcriptions encoded in the English dictionary, we tried to extract
tone patterns of words with different number of syllables, e.g. 2-syllable words, 3-syllable
words, etc. But there seem to be no unique tone sequence for each word type. For example,
for 2-syllable words, the tone sequence can be 00 (“begin”-/bii0 kin0/), 01 (“import”-/?im0
pɔɔt1/), 02 (“bonny”-/bɔɔn0 nii2/), 03 (“aircraft”-/?ɛɛ0 craaf3/), 10 (“smile”-/sa1 maaj0/),
11 (“bishop”-/bi1 chɔɔp1/), 12 (“fader”-/feet1 dəə2/, 20 (“vietnam”-/wiiat2 naam0/, 21
(“weirdness”-/wiiat2 nees1/, 30 (“workday”-/wəək3 dee0/), 31 (“abbot”-/?ɛp3 bot1/), 32
(“beatle”-/bii3 thəl2/), 33 (“accept”-/?ɛk3 sep3/, etc. However, we create rules of tone
assignment by frequency of occurrences. Tone patterns that occur most often are used as
the default one. By doing this, though the program cannot assign correct tones to all words,
the tone assigned should be acceptable for a large number of words. The following is the
tone assignment rule for 2-syllable words.

Live + Live & Short vowel => 0 2
Live + Live & Long vowel => 0 0
Live + Dead & Short vowel => 0 1
Live + Dead & Long vowel => 0 2
Dead + Live => 3 2
Dead + Dead & Short vowel => 3 1
Dead + Dead & Long vowel =>3 2

There are seven tone patterns for 2-syllable words. Tones are assigned on the basis

of live/dead syllables and short/long vowels. A syllable is a dead one if it ends with one of
the following sounds, /p/, /t/, /k/, /f/, /s/, /ch/; or it ends with a short vowel. A syllable is a
live syllable if it ends with the following sound /m/, /n/, /ŋ/, /w/, /j/, /l/; or it ends with a
long vowel. For example, if the first syllable is a live syllable, its tone will be 0. If the next
syllable is also a live one with short vowel, the tone will be 2. Tone assignment rules for 3
or 4syllable words are also created in the similar way.

20 Wirote Aroonmanakun et al.

Experiments
Since the English grapheme-to-phoneme module is designed to generate Thai transcriptions
of any unknown words, which are usually proper names, the module is tested on 1,475
English proper names. The transcription output is expected to be fairly acceptable rather than
perfect. Therefore, we evaluate the performance of the module by judging the results in
terms of degrees of acceptability, adapted from Coker et al.(1990), namely “good”, “fair”,
and “poor”. The label “good” means the transcription is what the judge would have said.
“Fair” means the transcription sounds all right even the judge would not have said it that
way. “Poor” means the transcription sounds bad; no one would have said it. A graduate
student in the Linguistics program is asked to judge the result using this scale. For example,
the transcription /?ɛɛ0 leek1 sɛɛn0 driia2/ generated for the word “Alexandria” was judged as
“poor”; /khris3 thii2/ generated for “Christie” was judged as “fair”; /baa0 baa0 raa2/
generated for “Barbara” was judged as “good”. Table 3 shows the number of items judged.

Table 3: The result of judgment

 Good 417 28.27%
 Fair 237 16.07%
 Poor 821 55.66%
 Total 1475 100.00%

It can be seen from Table 3 that 44% of the outputs are acceptable (fair or good).
But 56% are not acceptable. Since generating appropriate tones is a difficult task and we
want to evaluate the letter-to-sound conversion rules, the judge was asked to re-evaluate
the result again by ignoring tones. The result from this judgment would better reflect the
performance of the English grapheme-to-phoneme module. The result is shown in Table 4.

Table 4 shows that the result is a bit better. The number of acceptable phoneme
sequences is up to 55%, while the number of unacceptable is 45%. Though the accuracy is
not up to the level of 80% as reported in other systems, the module is sufficient to the task
in this study, given that pronunciations of 44% of unseen words are acceptable, and the
rests are at least Thai pronunciations.

Table 4: The result of judgment when ignoring tones

 Good 537 36.41%
 Fair 278 18.85%
 Poor 660 44.75%
 Total 1475 100.00%

Discussion
This study has demonstrated a quick and easy way to create a grapheme-to-phoneme
conversion system. Instead of using a corpus which is fully aligned between characters and
sounds, we prepared training data only on the difficult mappings, which are vowels in this
study. Alignment is marked only for characters that produce those vowel sounds. Letter-to-
sound conversion rules then are automatically generated by a machine. Rule patterns

Thai transcriptions for English words 21

generated from the machine can immediately be used by the conversion program. However,
we chose to manually collapse rules by hand since we want the module to be very small.
Compared to previous research on English grapheme-to-phoneme conversion, which has the
number of rules up to 35,000 patterns (Bosch and Daelemans 1993), the number of rules in
this study is only 440 patterns. Though the accuracy of the module is not high, it is sufficient
to the task. Because most of English words’ transcriptions are already stored in the
dictionary, we only want the module to generate Thai transcriptions for a few unknown
words. These words are expected to be at least pronounceable in Thai. And if the
pronunciation really sounds bad, users can add the correct pronunciation in the user
dictionary.

Acknowledgments
This research is only a small part of the project “Text to Speech and Automatic Speech
Recognition for Wireless and Wire Line Value Added Services”, which is developed by the
Centre for Research in Speech and Language Processing, Chulalongkorn University, for the
Sun System Co.Ltd. in 2003.

References
Bosch, A. van den and W. Daelemans. 1993. Data-oriented methods for grapheme-to-

phoneme conversion. In Proceedings of the Sixth Conference of the European
Chapter of the Association for Computational Linguistics, pages 45-53, Utrecht,
Netherland.

Chotimongkol, Ananlada and Alan W Black. 2000. Statistically trained orthographic to sound
Models for Thai, In Proceedings of ICSLP 2000, Beijing, China October 2000.

Coker, C., K. Church and M. Liberman, 1990. Morphology and Rhyming: Two Powerful
Alternatives to Letter-to-Sound Rules for Speech Synthesis. In Proceedings of the
Conference on Speech Synthesis, European Speech Communication Association.

Luksaneeyanawin, Sudaporn. 1989. A Thai Text to Speech System. In Proceeding of the
Conference of the Regional Workshops on Computer Processing of Asian Languages,
pages 305-315, Asian Institute of Technology.

Meknavin, Surapant and Boonserm Kijsirikul. 2000. Thai Grapheme-to-Phoneme
Conversion. In Burn-ham, Denis, et.al., editors, Interdisciplinary Approaches to
Language Processing: The International Conference on Human and Machine
Processing of Language and Speech. NECTEC: Bangkok.

Tarsaku, Pongthai, Virach Sornlertlamvanich, and Rachod Thongpresirt. 2001. Thai
Grapheme-to-Phoneme Using Probabilistic GLR Parser. In Proceedings of
Eurospeech 2001, Aalborg, Denmark, Sept 2001.

22 Wirote Aroonmanakun et al.

Appendix : Examples of the result

Word Transcription Judgment1 Judgment2 (ignore tone)

Abraham ʔɛɛ0^brɛɛ0^hɛɛm2^ poor poor
Ackworth ʔɛk3^khwɔɔt1^ good good
Adam ʔaa0^daam0^ good good
Alan ʔaa0^lɛɛn0^ good good
Alexander ʔaa0^leek1^sɛɛn0^dəə2^ fair good
Alfred ʔɛɛl0^freet1^ good good
Baker bee0^khəə0^ fair good
Baldwin bɔɔl0^wiin0^ fair good
Blackwell blɛk3^khweel2^ poor poor
Buckingham bak3^khiŋ0^hɛɛm2^ fair good
Cameron khee0^məə0^roon2^ fair fair
Campbell khɛɛm0^beel0^ good good
Christie khris3^thii2^ fair fair
Christina khris3^thii0^naa2^ good good
Dennis deen0^nis1^ good good
Duncan duun0^khɛɛn0^ poor poor
Edmund ʔeet3^muun2^ fair fair
Edward ʔeet3^wɔɔt1^ poor poor
Fabian fɛɛ0^biian0^ good good
Fleetwood fliit3^wuut1^ fair good
Fleming flee0^miŋ2^ fair fair
Fortune fɔɔ0^thuun0^ good good
Geoffrey cii0^ʔaa0^ʔoof3^free2^ poor poor
Gifford kif3^fɔɔt1^ good good
Gilbert kiil0^bəət1^ good good
Harris haa0^ris1^ poor poor
Harte haa0^thee0^ poor poor
Harvard haa0^waat1^ good good
Mary maa0^rii0^ poor poor
Obson ʔoop3^saan2^ poor poor

