PRELIMINARY DEVELOPMENT OF INTELLIGENT TRANSPORTATION SYSTEM (ITS) IN THAILAND

Tuenjai Fukuda¹), Atsushi Fukuda²), Kumropluk Surasawadee³), and Padet Praditphet ⁴)

The Sixth International Summer Symposium
July 31, 2004, Saitama University, Saitama, JAPAN
- Organized by Japan Society of Civil Engineers -

¹) Graduate School of Science and Technology, Department of Civil Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551 Japan Tel. (81) 03-3817-1817 Fax. (81) 03-3817-1803 E-mail: noynofukuda99@yahoo.com and fukuda@civil.chuo-u.ac.jp

²) College of Science and Technology, Dept. of Transportation Engineering and Socio-Technology, Nihon University, 7-24-1 Narashinodai, Funabashi, Chiba 274-8501, Japan E-mail: fukuda@trpt.cst.nihon-u.ac.jp

³) Director of Office of Transport and Traffic Policy and Planning (OTP), Office of Transport and Traffic Policy and Planning (OTP), Ministry of Transport, 35 Petchaburi Rd., Phayathai, Ratchatevi, Bangkok 10400, Thailand Tel. (66-2) 215-4545 Fax. (66-2) 216-7395 E-mail: kumropluk@otp.go.th

⁴) Office of Transport and Traffic Policy and Planning (OTP), Ministry of Transport, 35 Petchaburi Rd., Phayathai, Ratchatevi, Bangkok 10400, Thailand Tel. (66) 02-215-1515 ext. 4018 Fax. (66) 02-215-4656 E-mail: p_praditphet@yahoo.com and p_praditphet@otp.go.th
Presentation Outline

Introduction
- Thailand & Bangkok Characteristics
- Previous studies on ITS in Thailand

Major Organizations Involved in the Current Development of ITS
- BMA, OTP, RTP, ETA, and BMTA

Deriving the Master Plan of Information and Communication Technology
- ICT Master Plan of MOT
- ICT Master Plan of OTP

ITS Directions from other Governmental Organizations Perspective
- BTS, MRTA, SRT, DOH, and DLT

Conclusion
Introduction

➢ Thailand & Bangkok Characteristics

➢ Previous studies on ITS in Thailand
Introduction

Lost Productivity and energy consume

- Traffic accidents
- Congestion and delays

In a ITS society,

- Safety
- Transport Efficiency and Comfort
- Environmental Conservation

Intelligent Transport System (ITS) has become an important issue for many cities

- ITS Master plan

“All join together to meet the needs of ITS today
For needs of ITS tomorrow”
Thailand & Bangkok Characteristics

Thailand covers an area of 514,000 sq.km.

Planning Data
- Growth rate: 0.9%, Life expectancy: 71.4 years
- Birth rate: 16.0/1,000 persons, Infant mortality rate: 21.1/1,000 persons

Transportation
- Railway length: 4,071 km.
- Highway: 64,600 km.
- Waterways: 4,000 km.
- 26.4 million Cars.

Bangkok covers an area of 1,568 sq.km. (BMR 9,269 sq.km.)

Planning Data
- Population: 9 million (BMR: 13 million)

Transportation
- Sky Train (BTS): 23 km. And Subway (MRT): 20 km.
- Roadway: 4,076 km.
- 5.5 million Cars.
- 23 million person trips/day
 (9 mil. By Public Transport, 13 mil. By Private Vehicle)
Previous studies on ITS in Thailand

Safety, Transport Efficiency, Significant Improvement in Comfort, and Environmental Conservation
1. The Feasibility study on ITS Implementation Project in Thailand
 By JATRO, Japan & OTP, Thailand (March 1999)

 Proposed 3 system functions
 - Information collection (e.g. Vehicle detector, CCTV, Radio & Telephone com.)
 - Information processing (e.g. Queue length, Incident info., Congestion level)
 - Information dissemination (e.g. CMS, GDP, Radio, Telephone & Internet)

- Functions of Traffic Information System -
2. Feasibility study on the introduction of traffic information system in Bangkok By MITI, Japan & OTP, Thailand (March 2000)

Proposed 4 system functions
- Information collection (e.g. Image sensor, AVI detector, TV monitor)
- Information processing (e.g. Queue length, Incident info., Travel time cal.)
- Information dissemination (e.g. VMS, Roadside radio, Mobile traffic info.)
- Support for traffic management (e.g. Info. exchange, Storage, Report)

- System Configuration -
3. Study on the Probe car information system in Bangkok
By ITS Japan, OTP and Chulalongkorn University Thailand (2001)

Proposed Probe car information system & Run test

- Probe car System -

Addition with.. Dynamic Route Guidance System (DRGS) through utilizing a large-scale Probe-Vehicle (with GPS antenna and sensors on Vehicle)
4. Strategy for application of ITS and VICS for the Asia-Pacific region
 (Strategy for application ITS for typical Asian city)
 By APT Study Question 3.2 (August 2002)
 Proposed 3 steps for development
 - Implement ATIS (e.g. Simple graphic & Text service by Mobile & Internet com.)
 - Review and Selection in-vehicle services (e.g. VICS in Japan)
 - Introduce VICS concept

- System Configuration VICS -
Major Organizations Involved in the Current Development of ITS

- BMA
- OTP
- RTP
- ETA
- BMTA

Safety, Transport Efficiency, Significant Improvement in Comfort, and Environmental Conservation

Information and Communications Technology

ROADS

VEHICLES

Advanced Road Usage

Work Load Reduction

PEOPLE
Advance Traffic Management System (ATMS)

Area Traffic Control (ATC) or Urban Traffic Control (UTC) (SCOOT System)
- ATC Phase 1 (31 sq.km. / 143 intersections) Installed
- ATC Phase 2 (150 sq.km. / 226 intersections) On going
- ATC Phase 3 (Cover BMR area / 230 intersections) On Plan

Close Circuit Television (CCTV) for Surveillance

Traffic signal count-down & reversible Lane
Traveler information

First step install 40 Sets
(Industrial Kiosk Enclosure)
User Friendly with GUI: Graphic User Interface
And Touch Screen

Car Parking Management
Difficulties of ATC system in Bangkok

Planning Phase
- Difficulties of control in each area (more CBD)
- Under Construction (e.g. BTS, MRTA)
 - Cause obstacle and lately installation

Implementation Phase
- Can not operate all of intersections (can not control continuously)
- Operated by integrated between Manual & Automatic system
- Open some times (off peak hour or night times)
- Decrease trust of ATC system

Complaint ATC system
- Needs evaluation for next phase
- Weakness feasibility or wrong decision

ATC Phase 1
- 31 sq.km.
- 143 intersections

ATC Phase 2
- 150 sq.km.
- 226 intersections

ATC Phase 3
- Cover BMR area
- 230 Intersections

(SCOOT System)
Transport & Traffic Control Center (TTCC)

- Transport & Traffic Database & Modeling
- Traffic Report or Traffic Information

Development of Real-Time Traffic Information System
Royal Thai Police (RTP)

Traffic Control Center (TCC)
Operated mainly by
- CCTV
- Traffic Police
 (Talky-Walky Communication)

Traffic Management
Operated mainly by
- Traffic Police
- Traffic Signal & Sign
- Speed Control
- Traffic Congestion Warning System
- VMS

http://www.trafficpolice.go.th/

Call 1197
FM radio broadcasting & TV.

Traffic News FM. 91 MHz (SVP 91)
http://www.trafficbkk.com/ Call 1644

Traffic News FM. 100 MHz (JS 100)
http://www.js100.com/ Call 1137

ITV TTV 1
(AM & PM Peak)

SMS
http://www.mAlert91.com/
Send SMS to 85191
Expressway and Rapid Transit Authority (ETA)

Management
- TCC
- CCTV
- Emergency Telephone
- Air quality measurements

Sign
- Overhead Sign
- Matrix Signs
- Variable Message Sign
- Graphic Sign

Payment
- Open System: Cash, Coupon, Toll Automatic Gate (TAG) or Electronic Toll Collection System (ETC)
- Close System: IC Card
Traveler Information
The time of Bus coming and arriving.

Plan to Connected Ticket
Which can use with BMTA’s bus, BTS and MRTA.

Plan to Operate Bus Services guarantees
The time of coming and arriving between a starting point - a destination and crowded passenger point

Plan to install GPS or Sensors in the Bus or Automatic Vehicle Location (AVL)
Deriving the Master Plan of Information and Communication Technology

- ICT Master Plan of MOT
- ICT Master Plan of OTP

PEOPLE

Information and Communications Technology

ROADS

VEHICLES

Advanced Road Usage

Work Load Reduction

Safety, Transport Efficiency, Significant Improvement in Comfort, and Environmental Conservation
Deriving the Master Plan of Information and Communication Technology

➢ Respond with the robust existing growth of information technology, particularly, utilizing advanced innovation technology
➢ Severe traffic congestion in Bangkok and other big cities

ICT Master Plan of MOT (2004-2006)

Cover proper descriptive traffic and transport missions

Focus on adoption of qualitatively and safely advanced information and communication technologies
➢ Development of administrative management and public service systems

Aims to create innovative services to satisfy serviced users
ICT Master Plan of OTP (2004-2006)

Establish the Commission for development of traffic information technology and ITS
- Focal point to manage ITS for generating a mutual cooperation between public and private sectors to adopt ITS technology efficiently and effectively.

ITS development and implementation as follows:

Development framework for the first ITS Master Plan in Thailand
- Study area cover BMA area.
- Project will implement from May 2004 to February 2005.

Development of real time traffic information system (1st Phase)
- Covering major roads near Ratchadapisek Ring Road.
- Project will implement from May 2004 to February 2005.

Installation of 200 CCTVs (2nd Phase)
- 77 intersections in BMA area.
- The duration of installation is 2 years.

Installation of Red-Light Camera (3rd Phase)
- Major intersections to detect the traffic violators.
- 2 years of installation.
ITS Directions from other Governmental Organizations Perspective

- DOH
- DLT
- BTS
- MRTA
- SRT
Electronic Toll System (ETS)
- Motorway system

Vehicle Actuated
- Cable Link System from Detector
- Real time
- Reversible Lane
- Solar Cell

Traveler Information
- Climate & Smog Warning
- Route information
- Rest Area
Department of Land Transport (DLT)

Navigation System
- Vehicle system
- GPS

Freight Transport System
- Truck Terminal
- Inter-City Bus Terminal

Transport Pollution Analysis System
- Special Hazardous and Poisonous Material Transport System

Transport Accident System
- Warning system
Bangkok Mass Transit System
Public Company Limited (BTS)

CENTRALIZED TRAFFIC CONTROL (CTC)

AUTOMATIC TRAIN PROTECTION (ATP)

CCTV

POLLUTION MONITORING

TOKEN VENDING MACHINE: TVM
- Ticketing
- Smart Card
CENTRALIZED TRAFFIC CONTROL (CTC)

AUTOMATIC TRAIN PROTECTION (ATP)

CCTV

POLLUTION MONITORING

TOKEN VENDING MACHINE: TVM
 ➢ Ticketing
 ➢ Smart Card
CENTRALIZED TRAFFIC CONTROL (CTC)
- On-line Control Terminal: CT
- On-line Management Terminal: MT
- On-line Reservation Terminal: RT
- Ticketing Terminal: TT

AUTOMATIC TRAIN PROTECTION (ATP)

Centralized Reservation System (CRS)
- Seat Ticketing and Reservation System: STARS
Conclusion

Safety, Transport Efficiency, Significant Improvement in Comfort, and Environmental Conservation

Information and Communications Technology

ROADS

VEHICLES

Advanced Road Usage

Work Load Reduction

Safety, Transport Efficiency, Significant Improvement in Comfort, and Environmental Conservation
Conclusion

Set-up the ITS Master Plan (for 5-10 years)

Integrated and Clarify the ITS Technologies
- ITS Activities & Application & Time Frame
- Responsible agency (Government & Private sector)
- Budget for Development and Maintenance
- Benefits

Significant potential of ITS Technologies
- Government paid attention to Developing ITS for Traffic Planning and Management such as...
 - BMA and RTP establishing the ATC, CCTV, VMS or CMS
 - OTP developing the Real-Time Traffic Information
 - BMTA and BMA interested the system support Public Transport (e.g. CCTV, AVI and other electronic devices)
 - DOH and ETA have a planned to adopt ETC (Expressway & Toll roads)
- In-Vehicle navigator system (GPS and GIS)
- Route specific traffic warnings beam to Cell phones (e.g. Traffic update)
- Multi-Use Transit Smart cards
- Weather information system
Conclusion

<table>
<thead>
<tr>
<th>Area of ITS for Thailand</th>
<th>What has been done? Adequate / Inadequate</th>
<th>What needs to be done? Are the skills available?</th>
<th>What outcomes To inform ITS strategies?</th>
<th>What benefits Gained?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safety (Incident)</td>
<td>Much</td>
<td>More on strengths technique</td>
<td>Warning & Avoidance strategies</td>
<td>Level of incident Statistic</td>
</tr>
<tr>
<td>Traffic Information</td>
<td>More</td>
<td>More Traveler Information</td>
<td>Understanding for travel</td>
<td>Social-Personal economic benefit</td>
</tr>
<tr>
<td>Traffic Management</td>
<td>More studies & More system</td>
<td>More ATC development</td>
<td>Need for new ATC</td>
<td>Important for both traffic management & efficiency</td>
</tr>
<tr>
<td>Environment Conservation</td>
<td>More</td>
<td>More on contributing factors</td>
<td>Decrease Emission loads</td>
<td>Non-health impacts</td>
</tr>
<tr>
<td>ITS Master Plan</td>
<td>Much</td>
<td>Long term (5-10 years)</td>
<td>Need for ITS implementation</td>
<td>Individual & Society benefit</td>
</tr>
<tr>
<td>Other</td>
<td>Some – Small studies</td>
<td>Larger & Long term</td>
<td>Need for new development</td>
<td>Social comfort and equity</td>
</tr>
</tbody>
</table>
Acknowledgements

Sincere thanks to JSCE and its Director and also in particular to Dr. Atsushi Fukuda Session chairperson from Nihon U. and Dr. Tuenjai Fukuda from Chuo U. for providing the opportunity to visit and presented today.
CONCEPT OF ITS MODEL

PEOPLE

ROADS

VEHICLES

Information and Communications Technology

Advanced Road Usage

Work Load Reduction

Safety, Transport Efficiency, Significant Improvement in Comfort, and Environmental Conservation
ITS development

Present

Simpler Application

ITS

Simple

Individual

Future

Complex Application

ITS

Intelligent

Integrated

Needs more integrated & more application development
CONCEPT OF ITS PROJECT

- **Transportation & Traffic**
 - AIR
 - RAIL
 - ROAD
 - INLAND WATERWAYS
 - COASTAL
 - MARINE

- **ITS Application**
 - Traffic Management
 - (ATC/CCTV/ETC/Detector/...)
 - Traffic Information
 - (VICS/Traffic report/Warning...)
 - Public Transport Management
 - (GPS/Ticket/Time table/...)
 - Logistic Management
 - (Truck Route/AHS/ETC...)
 - Etc...

- **Telecom & Infra.**

- **Other Support System**
 - Save LIFE
 - SAVE TIME
 - SAVE MONEY
 - FOR
 - Good Quality of LIFE

- **PROJECT ANALYSIS / EVALUATION**
 (Selected the suitable Technology & Setup Priority)
Harbour Department

CCTV
GIS
GPS
ELECTRONIC DATA INTERCHANGE (EDI)

ELECTRONIC WAYBILL DECLARATION A1 (EWD A1)

COMMON BASE RADIO (CBR)

Asean Collaboration Logistic Organization
- Internet EDI
- Chief Logistic Officer (CLO)
- Thailand Transport Exchange
- Electronic Toll Collection System (ETC)
Telecommunication Network

- SDH (Fiber optic 21 Rings)
- 6 ATM