Multi-variate Statistics

Extension of Bi-variate Statistics
(Y, X)~ random variables
where

X~ vectors of K random variables

X=[X,X,....X,]

Y ~ a single random variable

(c) Pongsa Pornchaiwiseskul, Faculty of Economics,

Multi-variate Analyses

e Pair-wise Covariance or

Correlation
« Multi-way ANOVA

* Multiple Regression

(c) Pongsa Pornchaiwiseskul, Faculty of Economics,



Multiple Regression Analysis

Focus on the dependency of Y on the
X vector, €.¢g.,

tyy =m(X, X, X ) =m(X)
oy =V(X, X5, X ) =v(X)

X, - explanatory or independent variable,
k=1,...K

Y - dependent variable

(c) Pongsa Pornchaiwiseskul, Faculty of Economics,
Chulalongkorn University

Multiple Linear Regression

Assumptions

1) linearity s, = Xp
where p=[g B, .. B.| are

unknown parameters

2) variance-independent or Jél Y = o’

3) normality, i.e. Y| X ~N(XB,o%)

(c) Pongsa Pornchaiwiseskul, Faculty of Economics,
Chulalongkorn University



CLNRM (1)

Classical Linear Normal Regression
Model 1s based upon the assumptions

V=XB+E
where i = index of the observation
&. = 1dentical and independent

normal error term
E~N(0,07) forall i=1,....n

(c) Pongsa Pornchaiwiseskul, Faculty of Economics,
Chulalongkorn University

CLNRM (2)

X 1s pre-selected or non-random but Y. or

l

& 1s randomly sampled.
XZB 1s the non-random component of Y.

& 1s the random component of Y.

Note that X, can be intentionally set to
one for all observations so that its
coefficient ,81 becomes the y-intercept.

(c) Pongsa Pornchaiwiseskul, Faculty of Economics,
Chulalongkorn University



CLNRM
Matrix Representation (1)

Define
_Yl_ _Xll X21 XKI_ |
Y_|% | X[ X Xo oo Xalg_
_Yn_ _Xln X2n XKn_ |
CLNRM

Matrix Representation (2)

Y -XB-¢€
< ~MVN(O,JZInj

where
0 is a nx1 column vector of zeroes

1 is an nxn identity matrix.
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CLNRM

Matrix Representation (3)

X is non-random. It is required that

the matrix X' X is invertible. Why?
Remember why we need Zn:(xi ~X)*>0

in Simple Linear Regression?

(c) Pongsa Pornchaiwiseskul, Faculty

OLS Estimation for CLNRM (1)

Héin Zn:[Yl _(Xu:Bl + X2iﬂ2 ...t XKiﬂK)]z

or

mn Y - XBJ Y - XB]



OLS Estimation for CLNRM (2)

First-Order Conditions

2[-X['[Y-xp]=0
- X'Y+X'XB=0
B [XTXTXTY

(c) Pongsa Pornchaiwiseskul, Faculty of Economics,

OLS Estimation for CLNRM (3)
E/s\timator for O
2 I 0 0
o = I :Y—Xﬁ]‘[Y—X[}]
- yy- Y'Y
n—K-~
where Y = Xﬁ is called the fitted value of Y
Why n-K?




Properties of OLS estimators (1)
Theorem E(ﬁ) — l}

vp) =2 [XX]["

Does not require normality assumption.

Note that B 1s an unbiased estimator of B

Properties of OLS estimators (2)

Proof E(ﬁ) _ XTX
=X'X

CXTE(Y)
CXTE(XP +€)
T X [XP+ E()]

T XTXB

(c) Pongsa Pornchaiwiseskul, Faculty of Economics,
Chulalongkorn University



Properties of OLS estimators (3)

Proof v (f) = :XTXFXTV(Y)MXTXFXT]T
=[x x["'xvx[xx]'

=[x x]'xvxp+ex[x x|’
XX]'XVEe)X[XX]

=[x x| x1 x[xX]"

= [x'x[

(c) Pongsa Pornchaiwiseskul, Faculty of Economics,

Properties of OLS estimators (4)

Theorem Due to the normality assumption

of &,
b~ mvn(p.o2[xx]")

N\
2

- (n-K) 75~ 7 (= K)
O

(c) Pongsa Pornchaiwiseskul, Faculty of Economics,



Properties of OLS estimators (5)

Variance-Covariance Matrix of ﬁ
vp) = [xX]'

VB CBLB) - CBLBO ]
C(ﬁZ’ﬂl) V(:Bz) C(ﬁ2’ﬁl{)

CBe ) CBeB) - V(B
O~ is generally unknown.

(c) Pongsa Pornchaiwiseskul, Faculty of Economics,
Chulalongkorn University

Properties of OLS estimators (6)

Estimated Variance-Covariance Matrix of IA}

A
Vig)=c*(X'X)"

ViB)  CB.B) - CB.By)
C(ﬁZ’ﬂl) V(:Bz) C(ﬁ2’ﬁl{)

. . . .
A A VoY A A A
CB..B) C(B..B,) - V(B,)
| K> /1 K> 72 K
(c) Pongsa Pornchaiwiseskul, Faculty of Economics,
Chulalongkorn University



Properties of OLS estimators (7)

Standard Deviation of Iék

Sd(lgk) = V(,gk)
Standard Error of ﬁ )

Se(,gk) = ‘}(ng)

(c) Pongsa Pornchaiwiseskul, Faculty of Economics,
Chulalongkorn University

Properties of OLS estimators (8)

BB
sd (:Bk

cal P
2

(n-K)7;
O

n—K

ﬂk ﬂk t(?l K)
Se(ﬂk

<<Basis for statistical inference>>

(c) Pongsa Pornchaiwiseskul, Faculty of Economics,
Chulalongkorn University



Central Limit Theorem (1)

Similar to that for the Simple Linear
Regression Model. Even though the
error terms are not normal, the
properties of OLS estimators
asymptotically hold when the sample

size 1s very large.

(c) Pongsa Pornchaiwiseskul, Faculty of Economics,

Central Limit Theorem (2)

In mathematical term,

Jn B _p)éMVN 0,0 XX]




Gauss-Markov Theorem (1)

Similar to that for the Simple Linear

Regression Model. Given that X is

non-random, OLS estimator is Best

Linear Unbiased Estimator.

Gauss-Markov Theorem (2)

A

l} is OLS estimator of B

~

l} 1s a non-OLS linear unbiased estimator of B

hV(B)h" <hV(B)h’
for any vector h % ()

(c) Pongsa Pornchaiwiseskul, Faculty of Economics,



Coefficient of Determination (1)

R? is a measure for goodness-of-fit. How
well does the model fit the observed
data? Low R” implies “bad” fit.

Definition R2=1_ SSR

SST
SSR = Sum of Squared Residuals

SST = Sum of Squared Totals

(c) Pongsa Pornchaiwiseskul, Faculty of Economics,
Chulalongkorn University

Coefficient of Determination (2)

VoS

where SSR = Z( ~Y)’ =[Y-YT[Y-Y]

l

SST:Z(YZ. —Y)?

Note that, in general, R? cannot be greater

than one but could be negative.

Chulalongkorn University



Coefficient of Determination (3)

Low R” or a bad fit does not mean a
bad model. It sitmply implies a large
uncertainty in the nature. It 1s
mainly used as a criterion to select

various ‘“‘candidate’” models.

Chulalongkorn University

Coefficient of Determination (4)

If an X1 has constant value or a linear
combination of X. s 1s equivalent to a

constant value, then, o< g2 <1 always

> (7, -y
> 7, -y

(c) Pongsa Pornchaiwiseskul, Faculty of Economics,
Chulalongkorn University

and R




Coefficient of Determination (5)

Interpretation if < R? <1

1-R* or SSR/SST can be interpreted as
the fraction of total variation of Y due
to the random component (&).

R’ is generally regarded as the fraction of
total variation of Y explained by the
explanatory variables or due to the non-
random component.

(c) Pongsa Pornchaiwiseskul, Faculty of Economics,

. 2
Adjusted- R” (1)
We can cheat on R by adding more
irrelevant independent variables on the

right-hand side, especially when

sample 1s small.

Higher K ==> smaller SSR ==>higher R

(c) Pongsa Pornchaiwiseskul, Faculty of Economics,



Adjusted- R* (2)

Definition ®
—2 SSR/(n—K) o
R =1- =1- 5
SST (n—1) 52
Concept

Penalize R by dividing with (n-K)when

an 1rrelevant variable 1s added.

Chulalongkorn University

Adjusted- R* (3)

Purpose

For a small sample, it 1s a better
measure for goodness-of-fit than R*.
It 1s also used as criterion to add or
remove an explanatory variable
from the model 1f it does not
contradict theories.

Chulalongkorn University



Statistical Inference about ﬂk

Confidence Interval for ,Bk
(1-)100% Cl for 5 = f3, +t_(n—K)se(3,)

Hypothesis Testing for ,Bi

H,: [, =0.6 .
H B, #0.6 t = Py _9'6
se(f5,)
tcal < l‘a (n — K) —> accept H . Otheriwse, reject H .
2

Chulalongkorn University

Testing for Effect of X on ¥

Mean-independence of ¥ on X,

Ho :IBk :O
Hl:ﬂkio A
B
cal ~— A
Se(ﬂk)

Accept H, => X, has no significant effect on ¥

Chulalongkorn University



Overall F-test (1)

Assumption

There 1s a constant term in the model or X | 1S
a vector of one. Why?

Test for mean-independence of ¥ on

[X,.X,.... X, ]

Hy: =5 =...= P =0
H: S, Z20#..% P #0

Chulalongkorn University

Overall F-test (2)

We are choosing between
Y-+ e e (H,)

expect low R° when all X ’s are included

Y=p+ BX+ pXt + fXt e - (H)
expect higher R’

Chulalongkorn University



Overall F-test (3)
o R’ 2 n—K
1-R* K -1

Accept H if FF <F o(K-1,n-K).
Otherwise, reject H. Note that

1) an F-test is always right-tailed.

~F(K-1n—K)

2) we need a positive R°.

Chulalongkorn University

Overall F-test (4)

R*=0 => must accept H,

Chulalongkorn University



Generalized F-test (1)

u :H(B)=0
n H(B) # 0

where
H(ﬁ) is a Mx1 vector function of [3

Note that M must be less than K.

(c) Pongsa Pornchaiwiseskul, Faculty of Economics,

Generalized F-test (2)

CH,®B)] [0 CH,®B) ] [0
H, H2:<|s> _|0 H HQ:(B) ) o

H,P)| |0] H,P)| |0]
or

H, Hl(B) :O’HZ(B) :Oa""HM (Pp)=0
H,:H,(B)#0,H,(p)#0,...H, () #0

Chulalongkorn University



Generalized F-test (3)

Linear Restriction
H(B) is a Mx1 vector linear function of [3
HPB)=RP-r
where R is an MxK coefficient matrix with
Rank=M
r 1s a Mx1 constant vector
H0 ZRB—I' =OorRB =T
H:RB-r#0aRp#r

(c) Pongsa Pornchaiwiseskul, Faculty of Economics,

Generalized F-test (4)

Two approaches
 Restricted Least Square (RLS)

« Wald Test

Chulalongkorn University



Restricted Least Square (1)

Require two LS runs
Unrestricted run 1s the OLS run on the

original model
==> S8R,
where

SSR,, 1s the sum of squared residuals
from the unrestricted run

Chulalongkorn University

Restricted Least Square (2)

Restricted LS run 1s as follows

min [Y-XPB]TY-XP]

subjectto  RPB=r
—=> SR,
where

SSR,, 1s the sum of squared residuals

Chulalongkorn University



Restricted Least Square (3)

Transform RLS to OLS (Elimination
Approach)

Define R=| A B |where

A is an MxM invertible sub-matrix of R

B is the Mx(K-M) sub-matrix containing

columns of R not in A

Chulalongkorn University

Restricted Least Square (4)

Define X= VW |  where
V is an NxM sub-matrix of X

W is the Nx(K-M) sub-matrix containing

columns of X notin V

Chulalongkorn University



Restricted Least Square (5)

Re-write the restriction as

[AB][; —r orAy+Bé=r

where
’Y 1s a Mx1 subset of ﬁ
Oisa (K-M)x1 subset of ﬁ

(c) Pongsa Pornchaiwiseskul, Faculty of Economics,

Restricted Least Square (6)

Re-write the model as

Y:[VW]; ‘€

=Vy+Wo+E&

Chulalongkorn University



Restricted Least Square (7)

Since A 1S invertible,
y=A""[r-Bd]
Substitute into the model.
Y=VA [r-Bé]+Wo+&
Y-VA r=[W-VA B]6+€&

(c) Pongsa Pornchaiwiseskul, Faculty of Economics,

Chulalongkorn University

Restricted Least Square (8)

P=70+&
where P=Y-VA r, Z=W-VA B
Apply OLS
0=[Z"Z'Z"P
¥=A""[r-Bd]

62 = SR _[P—Z3]'[P-Z5]

(c) Pongsa Pornchaiwiseskul, Faculty of Economics,

Chulalongkorn University



Restricted Least Square (9)

V(©©)=c’[Z Z]"
V) =A"BV(@)B'[A']
_ GZA—IB[ZTZ]—IBT[AT]—I
COV(%,8)=c*A"'B[Z"Z]"
AT'B[Z'Z]'B'[A']' A'B[Z'Z]"’

VA _ 2
Br)=0 (Z'Z]'B'[A"]" VAVAR

Chulalongkorn University

Restricted Least Square (10)

Lagrange Method
FOC  _XT[Y -XB]+R"A =0
X'Y-XXB,-R"A=0
B, =[X"X]"'[X'Y-R"A]
= [X'X]"'X"Y -[X"X]'R"A
=B, —[X'X]'R"A

Chulalongkorn University



Restricted Least Square (11)

Substitute into RB=r
[RBU—r] RIX'X] 'R"™A=0
=S [RBU —r]
where S =R[X'X]'R"
B. =P, - [X'XI'R"S7'[Rp,, —r]
=[[-[X'X]"R"S"'R]},,
+[XX] 1RTS r

cccccccccccccccccccccccccccccccccccccccccccccc

Chulalongkorn University

Restricted Least Square (12)

V(p,)=o’DX'X]'D"
where D=1 - [XTX]_lRTS_lR
5 = SSR,
n—(K—-M)
where SSR, =[Y — XBR]T[Y — XP,1

Prove that both RLS and LM yield
identical result

(c) Pongsa Pornchaiwiseskul, Faculty of Economics,

Chulalongkorn University



Restricted Least Square (13)

(SR =SSRO/M_p e
SSR,, /(n—K)

where

M 1s the number of restriction equations or
constraints or the number of rows in

matrix R
Note that df |, = n-K and df, = n-(K-M)

Chulalongkorn University

Restricted Least Square (14)

F <F o(M,n-K) ==>Accept H,
or restriction holds
F > F,(Mn-K) ==>Reject H, or restriction

does not holds

Chulalongkorn University



Wald Test (1)

Require only the Unrestricted run

— B,6~
0 T T AT [ 0 1
F., =[RB-r]' [RIX'X]"R" [ [Rf —r]—
o’ M
~ F(M,n-K)

AcceptH if F_ <F, o M,n-K).
Otherwise, reject H,,.

(c) Pongsa Pornchaiwiseskul, Faculty of Economics,

Wald Test (2)

Concept

Note that, given H, 1S true,
[RB—r] ~ MVN(0, 5 *R[X"X]'R")

Standardize a normal vector

Z =" RIX' X 'R |2 (R~ 1)

Chulalongkorn University



Wald Test (3)

Note that Z 1s a vector of M 11d

standard normal RV’s

Z'Z =[Rp—r]|[oc’RIX'X]'R" | [Rp—r]

2
~x (M)
Wald Test (4)
7'
F, =—M —~ F(M,n=K)
(”—K)?
n—K

1
M

~[Rp -] [RIX'X] 'R [Rp 1]

Chulalongkorn University



Example#1 (1)

Overall F-test 1s a simple case of

Generalized F-tests with

01 0 - 0] 0|

001 --- 0 0
R ={. . . . . Lr=|.
(K-1)xK .

0 00 1 0|

Chulalongkorn University

Example#1 (2)

RLS Approach

Since the restriction set 1s simple, the
restricted model can be written as

Y.=p,+&
By OLS =>'Ble ) B
SOR, :Z(Yz _181)2 :Z(Yz _Y)2

1=

Chulalongkorn University



Example#1 (3)

Note that SSRR = SST of the unrestricted
model.

- _SST, —SSR, n-K
o SSR, K-l
 (SST,, —SSR,)/SST, n—K

SSR,, /SST, K -1
R* n-K

Chulalongkorn University

Example#1 (4)

Wald Test (single-run)

See Eviews example

Chulalongkorn University



Example#2 (1)

Removing X, and X,

H,:5,=0,8,=0
H :6,#0,8,#0
Use this R and r 1n the test

Chulalongkorn University

Example#2 (2)

RLS Approach

Since the restriction set 1s simple, the
restricted model can be written as

vi=B Bt 4B X AE,

Chulalongkorn University



Example#3 (1)

H,:£,=0,6,=0,6,+5,=1
H : 5, #0,5,#0,0,+fs #1
Use this R and r in the test

01 00 00 -~ 0] [O]
R=001000 0lr=|0
0001 10 0] |1]
Example#3 (2)
RLS Approach

Since the restriction set 1s simple, the

restricted model can be written as
V=B BB X B X HE,

Y -X = B 1+B X X51)+B 6V AP kXi T,

See EViews exanplg:




Normality Tests

e Cumulative Normal plot

« Goodness-of-fit test (a Chi-square

test)

* Jarque-Bera Test

(c) Pongsa Pornchaiwiseskul, Faculty of Economics,

Cumulative Normal Plot (1)

If X 1s normal, graph of inverse CDF
of cumulative relative frequency
versus X will exhibit linearity

Step 1 Sort X

Step 2 Calculate Cumulative Relative
frequency F for each X. Note that

0<k<I]

Chulalongkorn University



Cumulative Normal Plot (2)

Step 3 Calculate (look for in the Z-
table) the Z value for the area on
left equal to F

Step 4 Plot Z against standardized X

If the graph 1s linear with slope of
+1, => X~Normal

Chulalongkorn University

Jarque-Bera Normality Test (1)

H,:$=0,x=3
H, :S #0,x%3
where S 1s skewedness

K 1s Kurtosis

Ko = (N~ K)( S? +—(K 3)j Xa(2)

Chulalongkorn University



Jarque-Bera Normality Test (2)
where &z\/ii(xi—f)z

Perform a right-tailed Xz-test

Note: different definition for skewedness and kurtosis

(c) Pongsa Pornchaiwiseskul, Faculty of Economics, 41

Chulalongkorn University

Jarque-Bera Normality Test (3)

ya®)

Accept H Reject H

(c) Pongsa Pornchaiwiseskul, Faculty of Economics, 42
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Prediction Interval of Y (1)

EYI1X,)) =X,
" A
EYI1X,)=X,p

[s an unbiased estimator of E(Y|X0)

where X, = [X1 D, Sy .,XKO]

VEX1X) = X, VBIX,]
—0'2X [XTX] X, ]

cccccccccccccccccccccccccccccccccccccccccccccc

Chulalongkorn University

Prediction Interval of Y (2)

(1-2)100% CI for E(Y|X ) =
A /\
— Xoﬁ+t n-xse(E(Y 1X,))

where

se(E(YIXO)) \/A X, XXX

(c) Pongsa Pornchaiwiseskul, Faculty of Economics,

Chulalongkorn University



Prediction Interval of Y (3)

(1-2)100% PI for Y|X =

= Xoﬁ +t, n-K)se(Y 1X,)

where 2

se(Y1X,) = \/?(1 XXX, ] )

Chulalongkorn University



