Multi-variate Statistics

Extension of Bi-variate Statistics

$$
(\mathrm{Y}, \boldsymbol{X}) \sim \text { random variables }
$$

where
$\boldsymbol{X} \sim$ vectors of K random variables

$$
\boldsymbol{X}=\left[\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{K}\right]
$$

$Y \sim$ a single random variable

Multi-variate Analyses

- Pair-wise Covariance or

Correlation

- Multi-way ANOVA
- Multiple Regression

Multiple Regression Analysis

Focus on the dependency of Y on the \boldsymbol{X} vector, e.g.,

$$
\mu_{Y \mid X}=m\left(X_{1}, X_{2}, \ldots, X_{K}\right)=m(X)
$$

$$
\sigma_{Y \mid X}^{2}=v\left(X_{1}, X_{2}, \ldots, X_{K}\right)=v(X)
$$

X_{k} - explanatory or independent variable,

$$
k=1, \ldots, K
$$

Y - dependent variable

Multiple Linear Regression

Assumptions

1) linearity $\mu_{Y \mid X}=X \boldsymbol{\beta}$
where $\boldsymbol{\beta}=\left[\begin{array}{llll}\beta_{1} & \beta_{2} & \ldots & \beta_{K}\end{array}\right]^{\mathrm{T}}$ are unknown parameters
2) variance-independent or $\sigma_{Y \mid X}^{2}=\sigma^{2}$
3) normality, i.e. $\quad Y \mid X \sim N\left(X \beta, \sigma^{2}\right)$

CLNRM (1)

Classical Linear Normal Regression

Model is based upon the assumptions

$$
Y_{i}=\boldsymbol{X}_{i} \boldsymbol{\beta}+\boldsymbol{\varepsilon}_{i}
$$

where $\quad i=$ index of the observation

$$
\begin{gathered}
\mathcal{E}_{\mathrm{i}}=\text { identical and independent } \\
\underline{\text { normal error term }}
\end{gathered}
$$

$$
\varepsilon_{i} \sim \mathrm{~N}\left(0, \sigma^{2}\right) \text { for all } i=1, \ldots, n
$$

(c) Pongsa Pornchaiwiseskul, Faculty of Economics,

Chulalongkorn University

CLNRM (2)

\boldsymbol{X}_{i} is pre-selected or non-random but Y_{i} or \mathcal{E}_{i} is randomly sampled.
$\boldsymbol{X}_{i} \boldsymbol{\beta}$ is the non-random component of Y_{i}
\mathcal{E}_{i} is the random component of Y_{i}.
Note that X_{1} can be intentionally set to one for all observations so that its coefficient β_{1} becomes the y -intercept.

CLNRM Matrix Representation (1)

Define

$$
\mathbf{Y}=\left[\begin{array}{c}
Y_{1} \\
Y_{2} \\
\vdots \\
Y_{n}
\end{array}\right], \mathbf{X}=\left[\begin{array}{cccc}
X_{11} & X_{21} & \ldots & X_{K 1} \\
X_{12} & X_{22} & \ldots & X_{K 1} \\
\vdots & \vdots & \vdots & \vdots \\
X_{1 n} & X_{2 n} & \ldots & X_{K n}
\end{array}\right], \boldsymbol{\varepsilon}=\left[\begin{array}{c}
\varepsilon_{1} \\
\varepsilon_{2} \\
\vdots \\
\varepsilon_{n}
\end{array}\right]
$$

CLNRM

Matrix Representation (2)

$$
\begin{gathered}
\mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon} \\
\boldsymbol{\varepsilon} \sim \operatorname{siv}\left(\mathbf{0}_{\sigma \sigma} \mathbf{I}_{n}\right)
\end{gathered}
$$

where
$\mathbf{0}$ is a nx 1 column vector of zeroes
\mathbf{I}_{n} is an nxn identity matrix.

CLNRM

Matrix Representation (3)

\mathbf{X} is non-random. It is required that

 the matrix $\mathbf{X}^{\mathbf{T}} \mathbf{X}$ is invertible. Why? Remember why we need $\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}>0$ in Simple Linear Regression?
OLS Estimation for CLNRM (1)

$$
\min _{\beta} \sum_{i=1}^{n}\left[Y_{i}-\left(X_{1 i} \beta_{1}+X_{2 i} \beta_{2}+\ldots+X_{k i} \beta_{K}\right)\right]^{2}
$$

or
$\underset{\beta}{\min }[\mathbf{Y}-\mathbf{X} \boldsymbol{\beta}]^{T}[\mathbf{Y}-\mathbf{X} \boldsymbol{\beta}]$

OLS Estimation for CLNRM (2)

First-Order Conditions

$$
\begin{gathered}
2[-\mathbf{X}]^{\mathrm{T}}[\mathbf{Y}-\mathbf{X} \boldsymbol{\beta}]=\mathbf{0} \\
-\mathbf{X}^{\mathrm{T}} \mathbf{Y}+\mathbf{X}^{\mathrm{T}} \mathbf{X} \boldsymbol{\beta}=\mathbf{0} \\
\hat{\boldsymbol{\beta}}=\left[\mathbf{X}^{\mathrm{T}} \mathbf{X}\right]^{-1} \mathbf{X}^{\mathrm{T}} \mathbf{Y}
\end{gathered}
$$

OLS Estimation for CLNRM (3)

Estimator for σ^{2}

$$
\begin{aligned}
\widehat{\sigma^{2}} & =\frac{1}{n-K}[\mathbf{Y}-\mathbf{X} \hat{\boldsymbol{\beta}}]^{\mathrm{T}}[\mathbf{Y}-\mathbf{X} \hat{\boldsymbol{\beta}}] \\
& =\frac{1}{n-K}\left[\mathbf{Y}^{\mathrm{T}} \mathbf{Y}-\mathbf{Y}^{\mathrm{T}} \hat{\mathbf{Y}}\right]
\end{aligned}
$$

where $\hat{\mathbf{Y}}=\mathbf{X} \hat{\boldsymbol{\beta}}$ is called the fitted value of \mathbf{Y} Why $n-K$?

Properties of OLS estimators (1)

Theorem $E(\hat{\boldsymbol{\beta}})=\boldsymbol{\beta}$

$$
V(\hat{\boldsymbol{\beta}})=\sigma^{2}\left[\mathbf{X}^{\mathrm{T}} \mathbf{X}\right]^{-1}
$$

Does not require normality assumption.
Note that $\hat{\boldsymbol{\beta}}$ is an unbiased estimator of $\boldsymbol{\beta}$.

Properties of OLS estimators (2)

$$
\text { Proof } \begin{aligned}
E(\hat{\boldsymbol{\beta}}) & =\left[\mathbf{X}^{\mathrm{T}} \mathbf{X}\right]^{-1} \mathbf{X}^{\mathrm{T}} E(\mathbf{Y}) \\
& =\left[\mathbf{X}^{\mathrm{T}} \mathbf{X}\right]^{-1} \mathbf{X}^{\mathrm{T}} E(\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}) \\
& =\left[\mathbf{X}^{\mathrm{T}} \mathbf{X}\right]^{-1} \mathbf{X}^{\mathrm{T}}[\mathbf{X} \boldsymbol{\beta}+E(\boldsymbol{\varepsilon})] \\
& =\left[\mathbf{X}^{\mathrm{T}} \mathbf{X}\right]^{-1} \mathbf{X}^{\mathrm{T}} \mathbf{X} \boldsymbol{\beta} \\
& =\boldsymbol{\beta}
\end{aligned}
$$

Properties of OLS estimators (3)

$$
\begin{aligned}
& \text { Proof } V(\hat{\boldsymbol{\beta}})=\left[\mathbf{x}^{+} \mathbf{x}\right]^{-1} \mathbf{x}^{r} V(\mathbf{Y})\left[\left[\mathbf{x}^{r} \mathbf{x}\right]^{-1} \mathbf{x}^{\dagger}\right]^{T} \\
& =\left[\mathbf{X}^{\prime} \mathbf{x}\right]^{-1} \mathbf{X}^{v} V(\mathbf{Y}) \mathbf{X}\left[\mathbf{X}^{\prime} \mathbf{X}\right]^{-1} \\
& =\left[\mathbf{x}^{\prime} \mathbf{X}\right]^{-1} \mathbf{x}^{\prime} V(\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}) \mathbf{X}\left[\mathbf{x}^{\prime} \mathbf{X}\right]^{-1} \\
& =\left[\mathbf{x}^{\top} \mathbf{x}\right]^{-1} \mathbf{x}^{\top} V(\boldsymbol{\varepsilon}) \mathbf{X}\left[\mathbf{x}^{\top} \mathbf{x}\right]^{-1} \\
& =\sigma^{2}\left[\mathbf{X}^{\prime} \mathbf{X}\right]^{-1} \mathbf{X}^{\prime} \mathbf{I}_{n} \mathbf{X}\left[\mathbf{X}^{\prime} \mathbf{X}\right]^{-1} \\
& =\sigma^{2}\left[\mathbf{X}^{\prime} \mathbf{X}\right]^{-1}
\end{aligned}
$$

Properties of OLS estimators (4)

Theorem Due to the normality assumption of \mathcal{E},

$$
\begin{gathered}
\hat{\boldsymbol{\beta}} \sim \operatorname{MVN}\left(\boldsymbol{\beta}, \sigma^{2}\left[\mathbf{X}^{\mathrm{T}} \mathbf{X}\right]^{-1}\right) \\
(n-K) \frac{\widehat{\sigma^{2}}}{\sigma^{2}} \sim \chi^{2}(n-K)
\end{gathered}
$$

and

Properties of OLS estimators (5)

$$
\begin{aligned}
& \text { Variance-Covariance Matrix of } \hat{\boldsymbol{\beta}} \\
& V(\hat{\boldsymbol{\beta}})=\sigma^{2}\left[\mathbf{X}^{\mathbf{}} \mathbf{X}\right]^{-1} \\
& \\
& \\
& =\left[\begin{array}{cccc}
V\left(\hat{\beta}_{1}\right) & C\left(\hat{\beta}_{1}, \hat{\beta}_{2}\right) & \cdots & C\left(\hat{\beta}_{1}, \hat{\beta}_{K}\right) \\
C\left(\hat{\beta}_{2}, \hat{\beta}_{1}\right) & V\left(\hat{\beta}_{2}\right) & \cdots & C\left(\hat{\beta}_{2}, \hat{\beta}_{K}\right) \\
\vdots & \vdots & \ddots & \vdots \\
C\left(\hat{\beta}_{K}, \hat{\beta}_{1}\right) & C\left(\hat{\beta}_{K}, \hat{\beta}_{2}\right) & \cdots & V\left(\hat{\beta}_{K}\right)
\end{array}\right]
\end{aligned}
$$

σ^{2} is generally unknown.

Properties of OLS estimators (6)

Estimated Variance-Covariance Matrix of $\hat{\boldsymbol{\beta}}$

$$
\begin{aligned}
\hat{V}(\hat{\boldsymbol{\beta}}) & =\widehat{\sigma^{2}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1}} \\
& =\left[\begin{array}{cccc}
\hat{V}\left(\hat{\beta}_{1}\right) & \hat{C}\left(\hat{\beta}_{1}, \hat{\beta}_{2}\right) & \cdots & \hat{C}\left(\hat{\beta}_{1}, \hat{\beta}_{K}\right) \\
\hat{C}\left(\hat{\beta}_{2}, \hat{\beta}_{1}\right) & \hat{V}\left(\hat{\beta}_{2}\right) & \cdots & \hat{C}\left(\hat{\beta}_{2}, \hat{\beta}_{K}\right) \\
\vdots & \vdots & \ddots & \vdots \\
\hat{C}\left(\hat{\beta}_{K}, \hat{\beta}_{1}\right) & \hat{C}\left(\hat{\beta}_{K}, \hat{\beta}_{2}\right) & \cdots & \hat{V}\left(\hat{\beta}_{K}\right)
\end{array}\right]
\end{aligned}
$$

Properties of OLS estimators (7)

Standard Deviation of $\hat{\beta}_{k}$

$$
\begin{aligned}
& \operatorname{sd}\left(\hat{\beta}_{k}\right)=\sqrt{V\left(\hat{\beta}_{k}\right)} \\
& \text { Standard Error of } \hat{\beta}_{k} \\
& \operatorname{se}\left(\hat{\beta}_{k}\right)=\sqrt{\hat{V}\left(\hat{\beta}_{k}\right)}
\end{aligned}
$$

Properties of OLS estimators (8)

$$
\begin{aligned}
t_{c a l} & =\frac{\frac{\hat{\beta}_{k}-\beta_{k}}{s d\left(\hat{\beta}_{k}\right)}}{\sqrt{\frac{(n-K) \frac{\sigma^{2}}{\sigma^{2}}}{n-K}}} \\
& =\frac{\hat{\beta}_{k}-\beta_{k}}{\operatorname{se}\left(\hat{\beta}_{k}\right)} \sim t(n-K)
\end{aligned}
$$

\ll Basis for statistical inference>>

Central Limit Theorem (1)

Similar to that for the Simple Linear Regression Model. Even though the error terms are not normal, the properties of OLS estimators asymptotically hold when the sample size is very large.

Central Limit Theorem (2)

In mathematical term,

$$
\sqrt{n}(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta}) \sim \mathrm{MVN}\left(\mathbf{0}, \sigma^{2}\left[\frac{\mathbf{X}^{\mathrm{T}} \mathbf{X}}{n}\right]^{-1}\right)
$$

Gauss-Markov Theorem (1)

Similar to that for the Simple Linear Regression Model. Given that \mathbf{X} is non-random, OLS estimator is Best Linear Unbiased Estimator.

Gauss-Markov Theorem (2)

$\hat{\boldsymbol{\beta}}$ is OLS estimator of $\boldsymbol{\beta}$
$\widetilde{\boldsymbol{\beta}}$ is a non-OLS linear unbiased estimator of $\boldsymbol{\beta}$

$$
\begin{aligned}
& \mathbf{h} \mathbf{V}(\hat{\boldsymbol{\beta}}) \mathbf{h}^{\top} \leq \mathbf{h} \mathbf{V}(\tilde{\boldsymbol{\beta}}) \mathbf{h}^{\top} \\
& \text { for any vector } \mathbf{h} \neq \mathbf{0}
\end{aligned}
$$

Coefficient of Determination (1)

R^{2} is a measure for goodness-of-fit. How well does the model fit the observed data? Low R^{2} implies "bad" fit.
Definition $\quad R^{2} \equiv 1-\frac{S S R}{S S T}$
SSR $=$ Sum of Squared Residuals
SST $=$ Sum of Squared Totals

Coefficient of Determination (2)

where $\operatorname{SSR}=\sum_{i=1}^{n}\left(Y_{i}-\hat{Y}_{i}\right)^{2}=[\mathbf{Y}-\hat{\mathbf{Y}}]^{\top}[\mathbf{Y}-\hat{\mathbf{Y}}]$

$$
S S T=\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}
$$

Note that, in general, R^{2} cannot be greater than one but could be negative.

Coefficient of Determination (3)

Low R^{2} or a bad fit does not mean a bad model. It simply implies a large uncertainty in the nature. It is mainly used as a criterion to select various "candidate" models.

Coefficient of Determination (4)

If an X_{i} has constant value or a linear combination of X_{i} 's is equivalent to a constant value, then, $0 \leq R^{2} \leq 1$ always
and

$$
R^{2}=\frac{\sum_{i=1}^{n}\left(\hat{Y}_{i}-\bar{Y}\right)^{2}}{\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}}
$$

Coefficient of Determination (5)

Interpretation if $0 \leq R^{2} \leq 1$

$1-R^{2}$ or $\mathrm{SSR} / \mathrm{SST}$ can be interpreted as the fraction of total variation of Y due to the random component (\mathcal{E}).
R^{2} is generally regarded as the fraction of total variation of Y explained by the explanatory variables or due to the nonrandom component.

Adjusted- $\boldsymbol{R}^{\mathbf{2}}$ (1)

We can cheat on R^{2} by adding more
irrelevant independent variables on the
right-hand side, especially when
sample is small.
Higher $K==>$ smaller $S S R==>$ higher R^{2}

Adjusted- $\boldsymbol{R}^{\mathbf{2}} \mathbf{(2)}$

Definition

$$
\bar{R}^{2} \equiv 1-\frac{S S R /(n-K)}{S S T /(n-1)}=1-\frac{\widehat{\sigma^{2}}}{s_{Y}^{2}}
$$

Concept

Penalize R^{2} by dividing with ($n-K$)when an irrelevant variable is added.

Adjusted- $\boldsymbol{R}^{\mathbf{2}}$ (3)

Purpose

For a small sample, it is a better measure for goodness-of-fit than R^{2}. It is also used as criterion to add or remove an explanatory variable from the model if it does not contradict theories.

Statistical Inference about β_{k}

Confidence Interval for $\boldsymbol{\beta}_{\mathbf{k}}$

$(1-\alpha) 100 \%$ CI for $\beta_{\mathrm{k}}=\hat{\beta}_{k} \pm t_{\underline{\alpha}}(n-K) \operatorname{se}\left(\hat{\beta}_{k}\right)$
Hypothesis Testing for $\boldsymbol{\beta}_{\mathbf{k}}^{\overline{2}}$

$$
\begin{aligned}
& \mathrm{H}_{0}: \beta_{k}=0.6 \\
& \mathrm{H}_{1}: \beta_{k} \neq 0.6
\end{aligned} \quad t_{c a l}=\frac{\hat{\beta}_{k}-0.6}{\operatorname{se}\left(\hat{\beta}_{k}\right)}
$$

$$
\left|t_{c a l}\right|<t_{\frac{\alpha}{2}}(n-K) \Rightarrow \operatorname{accept} \mathrm{H}_{0} . \text { Otheriwse, reject } \mathrm{H}_{0}
$$

Testing for Effect of $\boldsymbol{X}_{\mathrm{k}}$ on \boldsymbol{Y}

Mean-independence of Y on X_{k}

$$
\begin{aligned}
& \mathrm{H}_{0}: \beta_{k}=0 \\
& \mathrm{H}_{1}: \beta_{k} \neq 0 \\
& t_{c a l}=\frac{\hat{\beta}_{k}}{\operatorname{se}\left(\hat{\beta}_{k}\right)}
\end{aligned}
$$

Accept $\mathrm{H}_{0}=>X_{\mathrm{k}}$ has no significant effect on Y

Overall F-test (1)

Assumption

There is a constant term in the model or X_{1} is a vector of one. Why?

Test for mean-independence of Y on

$$
\begin{aligned}
& {\left[X_{2}, X_{3}, \ldots, X_{K}\right]} \\
& \quad \mathrm{H}_{0}: \beta_{2}=\beta_{3}=\ldots=\beta_{K}=0 \\
& \mathrm{H}_{1}: \beta_{2} \neq \beta_{3} \neq \ldots \neq \beta_{K} \neq 0
\end{aligned}
$$

Overall F-test (2)

We are choosing between

$$
\begin{equation*}
Y=\beta_{1}+\varepsilon \tag{0}
\end{equation*}
$$

expect low R^{2} when all X_{k} 's are included

$$
\begin{equation*}
Y=\beta_{1}+\beta_{2} X_{2}+\beta_{3} X_{3}+\ldots+\beta_{\mathrm{K}} X_{\mathrm{K}}+\varepsilon \tag{1}
\end{equation*}
$$ expect higher R^{2}

Overall F-test (3)

$$
F_{c a l}=\frac{R^{2}}{1-R^{2}} \frac{n-K}{K-1} \sim F(K-1, n-K)
$$

Accept H_{0} if $F_{\text {cal }}<F_{\alpha}(K-1, n-K)$. Otherwise, reject H_{0}. Note that

1) an F-test is always right-tailed.
2) we need a positive R^{2}.

Overall F-test (4)

Generalized F-test (1)

$$
\begin{aligned}
& \mathrm{H}_{0}: \mathbf{H}(\boldsymbol{\beta})=\mathbf{0} \\
& \mathrm{H}_{1}: \mathbf{H}(\boldsymbol{\beta}) \neq \mathbf{0}
\end{aligned}
$$

where

$\mathbf{H}(\boldsymbol{\beta})$ is a $M \mathrm{x} 1$ vector function of β
Note that M must be less than K.
(c) Pongsa Pornchaiwiseskul, Faculty of Economics,

Chulalongkorn University

Generalized F-test (2)

$$
\mathrm{H}_{0}:\left[\begin{array}{c}
H_{1}(\boldsymbol{\beta}) \\
H_{2}(\boldsymbol{\beta}) \\
\vdots \\
H_{M}(\boldsymbol{\beta})
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
0
\end{array}\right] \quad \mathrm{H}_{1}:\left[\begin{array}{c}
H_{1}(\boldsymbol{\beta}) \\
H_{2}(\boldsymbol{\beta}) \\
\vdots \\
H_{M}(\boldsymbol{\beta})
\end{array}\right] \neq\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
0
\end{array}\right]
$$

or

$$
\begin{aligned}
& \mathrm{H}_{0}: H_{1}(\boldsymbol{\beta})=0, H_{2}(\boldsymbol{\beta})=0, \ldots, H_{M}(\boldsymbol{\beta})=0 \\
& \mathrm{H}_{1}: H_{1}(\boldsymbol{\beta}) \neq 0, H_{2}(\boldsymbol{\beta}) \neq 0, \ldots, H_{M}(\boldsymbol{\beta}) \neq 0
\end{aligned}
$$

Generalized F-test (3)

Linear Restriction

$\mathbf{H}(\boldsymbol{\beta})$ is a $M \mathrm{x} 1$ vector linear function of $\boldsymbol{\beta}$
$\mathbf{H}(\boldsymbol{\beta})=\mathbf{R} \boldsymbol{\beta} \mathbf{- r}$
where \mathbf{R} is an $M \mathrm{x} K$ coefficient matrix with Rank= M
\mathbf{r} is a $M \mathrm{x} 1$ constant vector
$\mathrm{H}_{0}: \mathbf{R} \boldsymbol{\beta}-\mathbf{r}=\mathbf{0}$ or $\mathbf{R} \boldsymbol{\beta}=\mathbf{r}$
$\mathrm{H}_{1}: \mathbf{R} \boldsymbol{\beta}-\mathbf{r} \neq \mathbf{0}$ or $\mathbf{R} \boldsymbol{\beta} \neq \mathbf{r}$

Generalized F-test (4)

Two approaches

- Restricted Least Square (RLS)
- Wald Test

Restricted Least Square (1)

Require two LS runs
Unrestricted run is the OLS run on the original model
$==>S S R_{\mathrm{U}}$
where
$S S R_{U}$ is the sum of squared residuals from the unrestricted run

Restricted Least Square (2)

Restricted LS run is as follows
$\min [\mathbf{Y}-\mathbf{X} \boldsymbol{\beta}]^{\mathrm{T}}[\mathbf{Y}-\mathbf{X} \boldsymbol{\beta}]$
β
subject to $\quad \mathbf{R} \boldsymbol{\beta}=\mathbf{r}$
$==>S S R_{R}$
where
$S S R_{\mathrm{R}}$ is the sum of squared residuals from the restricted run

Restricted Least Square (3)

Transform RLS to OLS (Elimination

Approach)

Define $\mathbf{R}=[\mathbf{A} \mathbf{B}]$ where
\mathbf{A} is an $M \mathrm{x} M$ invertible sub-matrix of \mathbf{R}
\mathbf{B} is the $M \mathrm{x}(K-M)$ sub-matrix containing columns of \mathbf{R} not in \mathbf{A}

Restricted Least Square (4)

Define $\mathbf{X}=[\mathbf{V} \mathbf{W}] \quad$ where
\mathbf{V} is an $N \mathrm{x} M$ sub-matrix of \mathbf{X}
\mathbf{W} is the $N \mathrm{x}(K-M)$ sub-matrix containing columns of \mathbf{X} not in \mathbf{V}

Restricted Least Square (5)

Re-write the restriction as

$$
[\mathbf{A B}]\left[\begin{array}{l}
\boldsymbol{\gamma} \\
\boldsymbol{\delta}
\end{array}\right]=\mathbf{r} \quad \text { or } \mathbf{A} \boldsymbol{\gamma}+\mathbf{B} \boldsymbol{\delta}=\mathbf{r}
$$

where

$$
\begin{aligned}
& \gamma \text { is a } M \times 1 \text { subset of } \boldsymbol{\beta} \\
& \boldsymbol{\delta} \text { is a }(K-M) \times 1 \text { subset of } \beta
\end{aligned}
$$

Restricted Least Square (6)

Re-write the model as

$$
\begin{aligned}
\mathbf{Y} & =[\mathbf{V} \mathbf{W}]\left[\begin{array}{l}
\boldsymbol{\gamma} \\
\boldsymbol{\delta}
\end{array}\right]+\boldsymbol{\varepsilon} \\
& =\mathbf{V} \boldsymbol{\gamma}+\mathbf{W} \boldsymbol{\delta}+\boldsymbol{\mathcal { E }}
\end{aligned}
$$

Restricted Least Square (7)

Since \mathbf{A} is invertible,

$$
\boldsymbol{\gamma}=\mathbf{A}^{-1}[\mathbf{r}-\mathbf{B} \boldsymbol{\delta}]
$$

Substitute into the model.

$$
\begin{aligned}
& \mathbf{Y}=\mathbf{V A}^{-1}[\mathbf{r}-\mathbf{B} \boldsymbol{\delta}]+\mathbf{W} \boldsymbol{\delta}+\boldsymbol{\mathcal { E }} \\
& \mathbf{Y}-\mathbf{V A}^{-1} \mathbf{r}=\left[\mathbf{W}-\mathbf{V A} A^{-1} \mathbf{B}\right] \boldsymbol{\delta}+\boldsymbol{\varepsilon}
\end{aligned}
$$

Restricted Least Square (8)

$$
\begin{aligned}
& \mathbf{P}=\mathbf{Z} \boldsymbol{\delta}+\boldsymbol{E} \\
& \text { where } \mathbf{P}=\mathbf{Y}-\mathbf{V A}^{-1} \mathbf{r}, \mathbf{Z}=\mathbf{W}-\mathbf{V A}^{-1} \mathbf{B} \\
& \text { Apply OLS } \\
& \hat{\boldsymbol{\delta}}=\left[\mathbf{Z}^{\mathrm{T}} \mathbf{Z}\right]^{-1} \mathbf{Z}^{\mathrm{T}} \mathbf{P} \\
& \hat{\boldsymbol{\gamma}}=\mathbf{A}^{-1}[\mathbf{r}-\mathbf{B} \hat{\boldsymbol{\delta}}] \\
& \hat{\sigma}_{R}^{2}=\frac{S S R_{R}}{n-(K-M)} S S R_{R}=[\mathbf{P}-\mathbf{Z} \hat{\boldsymbol{\delta}}]^{\mathrm{T}}[\mathbf{P}-\mathbf{Z} \hat{\boldsymbol{\delta}}]
\end{aligned}
$$

Restricted Least Square (9)

$$
\begin{aligned}
& \mathrm{V}(\hat{\boldsymbol{\delta}})=\sigma^{2}\left[\mathbf{Z}^{\mathrm{T}} \mathbf{Z}\right]^{-1} \\
& \mathrm{~V}(\hat{\boldsymbol{\gamma}})=\mathbf{A}^{-1} \mathbf{B} \mathrm{~V}(\hat{\boldsymbol{\delta}}) \mathbf{B}^{\mathrm{T}}\left[\mathbf{A}^{\mathrm{T}}\right]^{-1} \\
&=\sigma^{2} \mathbf{A}^{-1} \mathbf{B}\left[\mathbf{Z}^{\mathrm{T}} \mathbf{Z}\right]^{-1} \mathbf{B}^{\mathrm{T}}\left[\mathbf{A}^{\mathrm{T}}\right]^{-1} \\
& \operatorname{COV}(\hat{\boldsymbol{\gamma}}, \hat{\boldsymbol{\delta}})=\sigma^{2} \mathbf{A}^{-1} \mathbf{B}\left[\mathbf{Z}^{\mathrm{T}} \mathbf{Z}\right]^{-1} \\
& \mathrm{~V}\left(\hat{\boldsymbol{\beta}}_{R}\right)=\sigma^{2}\left[\begin{array}{cc}
\mathbf{A}^{-1} \mathbf{B}\left[\mathbf{B}\left[\mathbf{Z}^{\mathrm{T}} \mathbf{Z - 1}\right]^{-1} \mathbf{B}^{\mathrm{T}}\left[\mathbf{A}^{\mathrm{T}}\right]^{-1}\right. & \mathbf{A}^{-1} \mathbf{B}\left[\mathbf{Z}^{\mathrm{T}} \mathbf{Z}\right]^{-1} \\
{\left[\mathbf{Z}^{\mathrm{T}} \mathbf{Z}^{-1} \mathbf{B}^{\mathbf{c}}\left[\mathbf{A}^{\mathrm{T}}\right]^{-1}\right.} & {\left[\mathbf{Z}^{\mathrm{Z}}\right]^{-1}}
\end{array}\right]
\end{aligned}
$$

Restricted Least Square (10)

Lagrange Method
FOC $\quad-\mathbf{X}^{\mathrm{T}}[\mathbf{Y}-\mathbf{X} \boldsymbol{\beta}]+\mathbf{R}^{\mathrm{T}} \hat{\lambda}=\mathbf{0}$

$$
\begin{aligned}
& \mathbf{X}^{\mathrm{T}} \mathbf{Y}-\mathbf{X}^{\mathrm{T}} \mathbf{X} \hat{\boldsymbol{\beta}}_{R}-\mathbf{R}^{\mathrm{T}} \hat{\lambda}=\mathbf{0} \\
\hat{\boldsymbol{\beta}}_{R}= & {\left[\mathbf{X}^{\mathrm{T}} \mathbf{X}\right]^{-1}\left[\mathbf{X}^{\mathrm{T}} \mathbf{Y}-\mathbf{R}^{\mathrm{T}} \hat{\lambda}\right] } \\
= & {\left[\mathbf{X}^{\mathrm{T}} \mathbf{X}\right]^{-1} \mathbf{X}^{\mathrm{T}} \mathbf{Y}-\left[\mathbf{X}^{\mathrm{T}} \mathbf{X}\right]^{-1} \mathbf{R}^{\mathrm{T}} \hat{\lambda} } \\
= & \hat{\boldsymbol{\beta}}_{U}-\left[\mathbf{X}^{\mathrm{T}} \mathbf{X}\right]^{-1} \mathbf{R}^{\mathrm{T}} \hat{\lambda}
\end{aligned}
$$

Restricted Least Square (11)

Substitute into $\mathbf{R} \boldsymbol{\beta}=\mathbf{r}$

$$
\begin{aligned}
& {\left[\mathbf{R} \hat{\boldsymbol{\beta}}_{U}-\mathbf{r}\right]-\mathbf{R}\left[\mathbf{X}^{\mathrm{T}} \mathbf{X}\right]^{-1} \mathbf{R}^{\mathrm{T}} \hat{\lambda}=\mathbf{0}} \\
& \hat{\lambda}=\mathbf{S}^{-1}\left[\mathbf{R} \hat{\boldsymbol{\beta}}_{U}-\mathbf{r}\right]
\end{aligned}
$$

where

$$
\mathbf{S}=\mathbf{R}\left[\mathbf{X}^{\mathrm{T}} \mathbf{X}\right]^{-1} \mathbf{R}^{\mathrm{T}}
$$

$$
\begin{aligned}
\hat{\boldsymbol{\beta}}_{R}= & \hat{\boldsymbol{\beta}}_{U}-\left[\mathbf{X}^{\mathrm{T}} \mathbf{X}\right]^{-1} \mathbf{R}^{\mathrm{T}} \mathbf{S}^{-1}\left[\mathbf{R} \hat{\boldsymbol{\beta}}_{U}-\mathbf{r}\right] \\
= & {\left[\mathbf{I}-\left[\mathbf{X}^{\mathrm{T}} \mathbf{X}\right]^{-1} \mathbf{R}^{\mathrm{T}} \mathbf{S}^{-1} \mathbf{R}\right] \hat{\boldsymbol{\beta}}_{U} } \\
& +\left[\mathbf{X}^{\mathrm{T}} \mathbf{X}\right]^{-1} \mathbf{R}^{\mathrm{T}} \mathbf{S}^{-1} \mathbf{r}
\end{aligned}
$$

Restricted Least Square (12)

$$
\mathrm{V}\left(\hat{\boldsymbol{\beta}}_{R}\right)=\sigma^{2} \mathbf{D}\left[\mathbf{X}^{\mathrm{T}} \mathbf{X}\right]^{-1} \mathbf{D}^{\mathrm{T}}
$$

where $\mathbf{D}=\mathbf{I}-\left[\mathbf{X}^{\boldsymbol{T}} \mathbf{X}\right]^{-1} \mathbf{R}^{\mathrm{T}} \mathbf{S}^{-1} \mathbf{R}$

$$
\hat{\sigma}_{R}^{2}=\frac{S S R_{R}}{n-(K-M)}
$$

where $\quad \operatorname{SSR}_{R}=\left[\mathbf{Y}-\mathbf{X} \hat{\boldsymbol{\beta}}_{R}\right]^{\mathrm{T}}\left[\mathbf{Y}-\mathbf{X} \hat{\boldsymbol{\beta}}_{R}\right]$
Prove that both RLS and LM yield identical result

Restricted Least Square (13)

$$
F_{c a l}=\frac{\left(S S R_{R}-S S R_{U}\right) / M}{S S R_{U} /(n-K)} \sim F(M, n-K)
$$

where

M is the number of restriction equations or constraints or the number of rows in matrix \mathbf{R}

Note that $\mathrm{df}_{\mathrm{U}}=n-K$ and $\mathrm{df}_{\mathrm{R}}=n-(K-M)$

Restricted Least Square (14)
 $F_{\text {cal }}<F_{\alpha}(M, n-K)==>$ Accept H_{0}
 or restriction holds
 $F_{\mathrm{cal}}>F_{\alpha}(M, n-K)==>$ Reject H_{0} or restriction
 does not holds

Wald Test (1)

Require only the Unrestricted run

$$
\begin{aligned}
= & >\hat{\boldsymbol{\beta}}, \hat{\sigma}^{2} \\
F_{\text {cal }} & =[\mathbf{R} \hat{\boldsymbol{\beta}}-\mathbf{r}]^{\mathrm{T}}\left[\mathbf{R}\left[\mathbf{X}^{\mathrm{T}} \mathbf{X}\right]^{-1} \mathbf{R}^{\mathrm{r}}\right]^{-1}[\mathbf{R} \hat{\boldsymbol{\beta}}-\mathbf{r}] \frac{1}{\widehat{\sigma^{2}} M} \\
& \sim F(M, n-K) \\
& \text { Accept } \mathrm{H}_{0} \text { if } F_{\text {cal }}<F_{\alpha}(M, n-K) . \\
& \text { Otherwise, reject } \mathrm{H}_{0} .
\end{aligned}
$$

Wald Test (2)

Concept

Note that, given H_{0} is true,

$$
[\mathbf{R} \hat{\boldsymbol{\beta}}-\mathbf{r}] \sim \operatorname{MVN}\left(\mathbf{0}, \sigma^{2} \mathbf{R}\left[\mathbf{X}^{\mathrm{T}} \mathbf{X}\right]^{-1} \mathbf{R}^{\mathrm{T}}\right)
$$

Standardize a normal vector

$$
\mathbf{Z}=\left[\sigma^{2} \mathbf{R}\left[\mathbf{X}^{\mathrm{T}} \mathbf{X}\right]^{-1} \mathbf{R}^{\mathrm{T}}\right]^{-\frac{1}{2}}[\mathbf{R} \hat{\boldsymbol{\beta}}-\mathbf{r}]
$$

Wald Test (3)

Note that Z is a vector of M iid standard normal RV's

$$
\begin{aligned}
\mathbf{Z}^{\top} \mathbf{Z} & =[\mathbf{R} \hat{\boldsymbol{\beta}}-\mathbf{r}]^{\top}\left[\sigma^{2} \mathbf{R}\left[\mathbf{X}^{\top} \mathbf{X}\right]^{-1} \mathbf{R}^{\mathrm{T}}\right]^{-1}[\mathbf{R} \hat{\boldsymbol{\beta}}-\mathbf{r}] \\
& \sim \chi^{2}(M)
\end{aligned}
$$

Wald Test (4)

$$
\begin{aligned}
F_{\text {cal }}= & \frac{\frac{\mathbf{Z}^{\mathrm{T}} \mathbf{Z}}{M}}{\frac{(n-K) \frac{\hat{\sigma}^{2}}{\sigma^{2}}}{n-K}} \sim F(M, n-K) \\
= & {[\mathbf{R} \hat{\boldsymbol{\beta}}-\mathbf{r}]^{\mathrm{T}}\left[\mathbf{R}\left[\mathbf{X}^{\mathrm{T}} \mathbf{X}\right]^{-1} \mathbf{R}^{\mathrm{T}}\right]^{-1}[\mathbf{R} \hat{\boldsymbol{\beta}}-\mathbf{r}] \frac{1}{\hat{\sigma}^{2} M} }
\end{aligned}
$$

Example\#1 (1)

Overall F-test is a simple case of
Generalized F-tests with

$$
{ }_{(K-1) \times K}^{\mathbf{R}}=\left[\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1
\end{array}\right], \mathbf{r}=\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
0
\end{array}\right]
$$

Example\#1 (2)

RLS Approach

Since the restriction set is simple, the restricted model can be written as

By OLS $\Rightarrow \gg \begin{aligned} & Y_{\dot{\hat{\alpha}}}=\beta_{1}+\varepsilon_{\mathrm{i}} \\ & \hat{\beta}_{1}\end{aligned}$

$$
S S R_{R}=\sum_{i=}^{n}\left(Y_{i}-\hat{\beta}_{1}\right)^{2}=\sum_{i=}^{n}\left(Y_{i}-\bar{Y}\right)^{2}
$$

Example\#1 (3)

Note that $S S R_{\mathrm{R}}=\operatorname{SST}$ of the unrestricted model.

$$
\begin{aligned}
F_{\text {cal }} & =\frac{S S T_{U}-S S R_{U}}{S S R_{U}} \frac{n-K}{K-1} \\
& =\frac{\left(S S T_{U}-S S R_{U}\right) / S S T_{U}}{S S R_{U} / S S T_{U}} \frac{n-K}{K-1} \\
& =\frac{R^{2}}{1-R^{2}} \frac{n-K}{K-1}
\end{aligned}
$$

Example\#1 (4)

Wald Test (single-run)
See Eviews example

Example\#2 (1)

Removing X_{2} and X_{3}

$$
\begin{aligned}
& \mathrm{H}_{0}: \beta_{2}=0, \beta_{3}=0 \\
& \mathrm{H}_{1}: \beta_{2} \neq 0, \beta_{3} \neq 0
\end{aligned}
$$

Use this \mathbf{R} and \mathbf{r} in the test

$$
\underset{2 \times K}{\mathbf{R}}=\left[\begin{array}{llllll}
0 & 1 & 0 & 0 & \cdots & 0 \\
0 & 0 & 1 & 0 & \cdots & 0
\end{array}\right], \mathbf{r}=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

Example\#2 (2)

RLS Approach

Since the restriction set is simple, the restricted model can be written as

$$
Y_{\mathrm{i}}=\beta_{1}+\beta_{4} X_{4 \mathrm{i}}+\ldots+\beta_{\mathrm{K}} X_{\mathrm{Ki}}+\varepsilon_{\mathrm{i}}
$$

Example\#3 (1)

$$
\begin{aligned}
& \mathrm{H}_{0}: \beta_{2}=0, \beta_{3}=0, \beta_{4}+\beta_{5}=1 \\
& \mathrm{H}_{1}: \beta_{2} \neq 0, \beta_{3} \neq 0, \beta_{4}+\beta_{5} \neq 1
\end{aligned}
$$

Use this \mathbf{R} and \mathbf{r} in the test

$$
\underset{3 \times K}{\mathbf{R}}=\left[\begin{array}{llllllll}
0 & 1 & 0 & 0 & 0 & 0 & \cdots & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & \cdots & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & \cdots & 0
\end{array}\right], \mathbf{r}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

Example\#3 (2)

RLS Approach

Since the restriction set is simple, the restricted model can be written as

$$
\begin{aligned}
Y_{\mathrm{i}} & =\beta_{1}+\beta_{4} X_{4 \mathrm{i}}+\left(1-\beta_{4}\right) X_{5 \mathrm{i}}+\ldots+\beta_{\mathrm{K}} X_{\mathrm{Ki}}+\varepsilon_{\mathrm{i}} \\
Y_{\mathrm{i}}-X_{5 \mathrm{i}} & =\beta_{1}+\beta_{4}\left(X_{4 \mathrm{i}}-X_{5 \mathrm{i}}\right)+\beta_{6} X_{6 \mathrm{i}} \ldots+\beta_{\mathrm{K}} X_{\mathrm{Ki}}+\varepsilon_{\mathrm{i}}
\end{aligned}
$$

See EViews example

Normality Tests

- Cumulative Normal plot
- Goodness-of-fit test (a Chi-square test)
- Jarque-Bera Test

Cumulative Normal Plot (1)

If X is normal, graph of inverse CDF of cumulative relative frequency versus X will exhibit linearity

Step 1 Sort X

Step 2 Calculate Cumulative Relative frequency F for each X. Note that

$$
0<\mathrm{E}<\mathrm{I}
$$

Cumulative Normal Plot (2)

Step 3 Calculate (look for in the Z-

 table) the Z value for the area on left equal to FStep 4 Plot Z against standardized X
If the graph is linear with slope of $+1,==>$ X \sim Normal

Jarque-Bera Normality Test (1)

$$
\begin{aligned}
& \mathrm{H}_{0}: S=0, \kappa=3 \\
& \mathrm{H}_{1}: S \neq 0, \kappa \neq 3
\end{aligned}
$$

where $\quad S$ is skewedness
K is Kurtosis

$$
\chi_{c a l}^{2}=(n-K)\left(\frac{1}{6} \hat{S}^{2}+\frac{1}{24}(\hat{\kappa}-3)^{2}\right) \sim \chi_{\alpha}^{2}(2)
$$

Jarque-Bera Normality Test (2)

where

$$
\begin{aligned}
& \hat{\sigma}=\sqrt{\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}} \\
& \hat{S}=\frac{1}{n} \sum_{i=1}^{n}\left(\frac{X_{i}-\bar{X}}{\hat{\sigma}}\right)^{3} \\
& \hat{\kappa}=\frac{1}{n} \sum_{i=1}^{n}\left(\frac{X_{i}-\bar{X}}{\hat{\sigma}}\right)^{4}
\end{aligned}
$$

Perform a right-tailed χ^{2}-test
Note: different definition for skewedness and kurtosis

Jarque-Bera Normality Test (3)

Prediction Interval of Y (1)

$$
\begin{aligned}
& \mathrm{E}\left(Y \mid \mathbf{X}_{0}\right)=\mathbf{X}_{0} \boldsymbol{\beta} \\
& \widehat{\mathrm{E}\left(Y \mid \mathbf{X}_{0}\right)}=\mathbf{X}_{0} \hat{\boldsymbol{\beta}}
\end{aligned}
$$

Is an unbiased estimator of $\mathrm{E}\left(\mathrm{Y} \mid \mathbf{X}_{0}\right)$

$$
\begin{aligned}
& \text { where } \mathbf{X}_{0}=\left[\mathrm{X}_{10} \mathrm{X}_{20}, \ldots, \mathrm{X}_{\mathrm{K} 0}\right] \\
& \begin{aligned}
\mathrm{V}\left(\widehat{\mathrm{E}\left(Y \mid \mathbf{X}_{0}\right.}\right) & = \\
= & \mathbf{X}_{0} \mathbf{V}(\hat{\boldsymbol{\beta}})\left[\mathbf{X}_{0}\right]^{\mathrm{T}} \\
& =\sigma^{2} \mathbf{X}_{0}\left[\mathbf{X}^{\mathrm{T}} \mathbf{X}\right]^{-1}\left[\mathbf{X}_{0}\right]^{\mathrm{T}}
\end{aligned}
\end{aligned}
$$

(c) Pongsa Pornchaiwiseskul, Faculty of Economics,

Chulalongkorn University

Prediction Interval of Y (2)

$(1-\alpha) 100 \% \mathrm{CI}$ for $\mathrm{E}\left(\mathrm{Y} \mid \mathbf{X}_{0}\right)=$

$$
=\mathbf{X}_{0} \hat{\boldsymbol{\beta}}+t_{\frac{\alpha}{2}}(n-K) \operatorname{se}\left(\widehat{\mathrm{E}\left(Y \mid \mathbf{X}_{0}\right)}\right)
$$

where

$$
\operatorname{se}\left(\widehat{\mathrm{E}\left(Y \mid \mathbf{X}_{0}\right)}\right)=\sqrt{\widehat{\sigma^{2}} \mathbf{X}_{0}\left[\mathbf{X}^{\mathrm{T}} \mathbf{X}\right]^{-1}\left[\mathbf{X}_{0}\right]^{\mathrm{T}}}
$$

Prediction Interval of Y (3)

$(1-\alpha) 100 \%$ PI for $\mathrm{Y} \mid \mathbf{X}_{0}=$

$$
=\mathbf{X}_{0} \hat{\boldsymbol{\beta}}+t_{\frac{\alpha}{2}}(n-K) \operatorname{se}\left(Y \mid \mathbf{X}_{0}\right)
$$

where

$$
\operatorname{se}\left(Y \mid \mathbf{X}_{0}\right)=\sqrt{\widehat{\sigma^{2}}\left(1+\mathbf{X}_{0}\left[\mathbf{X}^{\mathrm{T}} \mathbf{X}\right]^{-1}\left[\mathbf{X}_{0}\right]^{\mathrm{T}}\right)}
$$

