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Extension of Bi-variate Statistics

(Y, X)~ random variables
where 

X~ vectors of K random variables

X = [X1,X2,*,X
K
]

Y ~ a single random variable
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, Pair-wise Covariance or 

Correlation

, Multi-way ANOVA

, Multiple Regression
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Multiple Regression Analysis

Focus on the dependency of Y on the 
X vector, e.g.,

X
k
- explanatory or independent variable,
k = 1,*,K

Y - dependent variable
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Assumptions

1) linearity

where are 
unknown parameters 

2) variance-independent or

3) normality, i.e.

βX
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|
µ
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CLNRM (1)

Classical Linear Normal Regression 
Model is based upon the assumptions

Y
i
= X

i
ββββ + ε

i

where i = index of the observation

ε
i
= identical and independent

normal error term

ε
i
~ N(0,σ 2) for all i=1,*,n
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CLNRM (2)

X
i
is pre-selected or non-random but Y

i
or

ε
i
is randomly sampled. 

X
i
ββββ is the non-random component of Y

i

ε
i
is the random component of Y

i
. 

Note that X
1
can be intentionally set to 

one for all observations so that its 
coefficient β

1
becomes the y-intercept.
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CLNRM

Define 
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CLNRM

β +=









n
MVN I0ε 2,~ σ

where

is a nx1 column vector of zeroes

n is an nxn identity matrix.
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CLNRM

is non-random. It is required that 

the matrix T is invertible. Why? 

Remember why we need

in Simple Linear Regression?
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OLS Estimation for CLNRM (1)

min
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min 
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OLS Estimation for CLNRM (2)

First-Order Conditions
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OLS Estimation for CLNRM (3)
Estimator for σ 2

where                 is called the fitted value of Y
Why n-K?
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Properties of OLS estimators (1)

Theorem

Does not require normality assumption.

Note that      is an unbiased estimator of ββββ.
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Properties of OLS estimators (2)
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Properties of OLS estimators (3)

Proof [ ] [ ][ ]TVV
TTTT

XXXYXXXβ
11

)()ˆ(
−−

=

[ ] [ ]
[ ] [ ]
[ ] [ ]

[ ] [ ]
[ ] 12

112

11

11

11

)(

)(

)(

−

−−

−−

−−

−−

=

=

=

+=

=

XX

XXXIXXX

XXXεXXX

XXXεXβXXX

XXXYXXX

T

TTT

TTT

TTT

TTT

σ

σ
n

V

V

V

(c) Pongsa Pornchaiwiseskul, Faculty of Economics, 

Chulalongkorn University

16

Properties of OLS estimators (4)

Theorem Due to the normality assumption 

of ε, 

and
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Variance-Covariance Matrix of 
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Estimated Variance-Covariance Matrix of 
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Standard Deviation of 
k
β̂
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kk
βVβse =

Standard Error of 
k
β̂
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Properties of OLS estimators (7)
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Similar to that for the Simple Linear 

Regression Model. Even though the 

error terms are not normal, the 

properties of OLS estimators 

asymptotically hold when the sample 

size is very large.
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In mathematical term, 
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Similar to that for the Simple Linear 

Regression Model. Given that X is 

non-random, OLS estimator is Best 

Linear Unbiased Estimator.

(c) Pongsa Pornchaiwiseskul, Faculty of Economics, 

Chulalongkorn University

24

is OLS estimator of ββββ

is a non-OLS linear unbiased estimator of ββββ
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Coefficient of Determination (1)

R
2 is a measure for goodness-of-fit. How 

well does the model fit the observed 
data? Low R2 implies JbadK fit.

Definition

SSR = Sum of Squared Residuals

SST = Sum  of Squared Totals 

SST

SSR
R −≡1

2
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Coefficient of Determination (2)
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Coefficient of Determination (3)

Low R2 or a bad fit does not mean a 

bad model. It simply implies a large 

uncertainty in the nature. It is 

mainly used as a criterion to select 

various JcandidateK models. 
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Coefficient of Determination (4)

If an X
i
has constant value or a linear 

combination of X
i
Ls is equivalent to a 

constant value, then,                    always

and 
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Coefficient of Determination (5)

Interpretation if 

1-R2 or SSR/SST can be interpreted as 
the fraction of total variation of Y due 
to the random component (ε). 
R

2 is generally regarded as the fraction of 
total variation of Y explained by the 
explanatory variables or due to the non-
random component.

10
2 ≤≤ R
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2 

We can cheat on R2 by adding more 

irrelevant independent variables on the 

right-hand side, especially when 

sample is small. 

Higher K ==> smaller SSR ==>higher R2
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2 

Definition

Concept

Penalize R2 by dividing with (n-K)when 
an irrelevant variable is added. 
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2 

Purpose

For a small sample, it is a better 
measure for goodness-of-fit than R2. 
It is also used as criterion to add or 
remove an explanatory variable 
from the model if it does not 
contradict theories. 
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Mean-independence of Y on Xk

Accept H0 => Xk has no significant effect on Y
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Assumption

There is a constant term in the model or X1 is 
a vector of one. Why?

Test for mean-independence of Y on 
[X2,X3,*,X

K
]
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We are choosing between

Y = β1+ ε ---- (H0)

expect low R2 when all XkLs are included

Y = β1+ β2X2+ β3X3+*+ βKXK+ ε    ---- (H1)

expect higher R2
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Accept H0 if Fcal < Fα(K-1,n-K). 
Otherwise, reject H0. Note that

1) an F-test is always right-tailed.

2) we need a positive R2.
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R
2=0 => must accept H0

α

FFα

reject H0accept H0
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where
H(ββββ) is a Mx1 vector function of ββββ

Note that M must be less than K.
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Linear Restriction
H(ββββ) is a Mx1 vector linear function of ββββ

H(ββββ) = Rββββ - r
where R is anMxK coefficient matrix with

Rank=M
r is a Mx1 constant vector
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Two approaches

, Restricted Least Square (RLS)

, Wald Test



(c) Pongsa Pornchaiwiseskul, Faculty of Economics, 

Chulalongkorn University

11

Require two LS runs
Unrestricted run is the OLS run on the
original model

==> SSR
U

where

SSR
U

is the sum of squared residuals 
from the unrestricted run
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Restricted LS run is as follows
min [Y-Xββββ]T[Y-Xββββ]
ββββ

subject to Rββββ=r
==> SSR

Rwhere

SSR
R

is the sum of squared residuals 
from the restricted run
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Transform RLS to OLS (Elimination 
Approach)

Define R=[ A B ]where 

A is an MxM invertible sub-matrix of R

B is the Mx(K-M) sub-matrix containing 

columns of R not in A
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Define X=[ V W ] where 

V is an NxM sub-matrix of X

W is the Nx(K-M) sub-matrix containing 

columns of X not in V
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Re-write the restriction as

[ ] r BδAγr
δ

γ
BA =+=








or    

where

γγγγ is a Mx1 subset of ββββ
δδδδ is a (K-M)x1 subset of ββββ
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Re-write the model as
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Since A is invertible,

][
1

BδrAγ −= −

Substitute into the model. 
   εWδBδ[rVAY ++−= −

]
1

   εδB]VA[WrVAY +−=− −− 11
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  εδZP +=
BVAWZrVAYP

11

,
−− −=−=   where

Apply OLS
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Lagrange Method
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Substitute into Rββββ=r

where 
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where

where

Prove that both RLS and  LM yield 
identical result
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where

M is the number of restriction equations or 
constraints or the number of rows in 
matrix R
Note that df 

U
= n-K and df

R
= n-(K-M)
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Fcal < Fα(M,n-K) ==>Accept H
0

or restriction holds

Fcal > Fα(M,n-K) ==>Reject H
0
or restriction

does not holds
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Require only the Unrestricted run

==> 
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Accept H0 if Fcal < Fα(M,n-K). 
Otherwise, reject H0.
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Concept

Note that, given H
0
is true, 

[ ] ]ˆ[][ 2
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−− TTσ
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Standardize a normal vector
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Note that Z is a vector of M iid

standard normal RVLs
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Overall F-test is a simple case of 

Generalized F-tests with 
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RLS Approach
Since the restriction set is simple, the 

restricted model can be written as 

Yi = β1 + εi

By OLS =>
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Note that SSRR = SST of the unrestricted 
model.
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Wald Test (single-run)

See Eviews example 
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Removing X
2
and X

3

Use this R and r in the test
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RLS Approach

Since the restriction set is simple, the 
restricted model can be written as 

Yi = β1+β4X4i+ *+βKXKi+εi



(c) Pongsa Pornchaiwiseskul, Faculty of Economics, 

Chulalongkorn University

35

Use this R and r in the test
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RLS Approach

Since the restriction set is simple, the 

restricted model can be written as 

Y
i
= β

1
+β

4
X
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+(1-β
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See EViews example
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, Cumulative Normal plot

, Goodness-of-fit test (a Chi-square 

test) 

, Jarque-Bera Test
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If X is normal, graph of  inverse CDF 
of  cumulative relative frequency 
versus X will exhibit  linearity

Step 1 Sort X

Step 2 Calculate Cumulative Relative 
frequency F for each X. Note that 
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Step 3 Calculate (look for in the Z-
table) the Z value for the area on 
left equal to F

Step 4 Plot Z against standardized X

If the graph is linear with slope of 
+1, ==> X~Normal
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where S is skewedness

κ is Kurtosis
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Perform a right-tailed χ2-test
Note: different definition for skewedness and kurtosis
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α
1−α

χ2(2)
Accept H0 Reject H0
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Is an unbiased estimator of  E(Y|X
0
) 

where X
0
= [X
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(1-α)100% CI for E(Y|X
0
) =

where
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(1-α)100% PI for Y|X
0
=

where

[ ]( )T1-Tse 00

2

0 ][1)|( XXXXX += σY

)|(ˆ
0

2

0
)( XβX Yt Kn se−+= α


