Independent Dummy Variables (1)

Transform a binary qualitative variable (with

non-numerical values) to a dummy variable.

For example,

GENDER = 1 if the observation is male

= 0 if it is female

(c) Pongsa Pornchaiwiseskul, Faculty of Economics, Chulalongkorn University

Independent Dummy Variables (2)

Note that

- 1) the setting is arbitrary. However, it should make the interpretation simple.
- In general, zero will be given to the reference case. In the example, female is treated as "reference".

Single Dummy (1)

ExampleExpenditure functionMale $EXP_i = \beta_1 + \beta_2 INC_i + \varepsilon_i$ Female $EXP_i = \gamma_1 + \gamma_2 INC_i + \varepsilon_i$ $H_0: \beta_1 = \gamma_1, \beta_2 = \gamma_2$ $H_1: \beta_1 \neq \gamma_1, \beta_2 \neq \gamma_2$ Do male and female share the same mean equation?

(c) Pongsa Pornchaiwiseskul, Faculty of Economics, Chulalongkorn University

Single Dummy (2)

Integrate the expenditure functions.

Define a dummy variable

MALE=1 for male

 $EXP_i = \beta_1 MALE_i + \gamma_1 (1 - MALE_i)$

 $+ \beta_2 MALE_i \bullet INC_i$

 $+\gamma_2(1-MALE_i) \bullet INC_i + \varepsilon_i$

Single Dummy (3)

EXP	MALE	1-MALE	MALE*INC	(1-MALE)*INC
Male	1	0	Male	0
	•	•		•
EXP	1	0	INC	0
Female	0	1	0	Female
	•	•	•	•
EXP	0	1	0	INC

Integrate the two data sets.

(c) Pongsa Pornchaiwiseskul, Faculty of Economics, Chulalongkorn University

Single Dummy (4)

- Run OLS on the integrated data
- Number of parameters (K) = 4
- degrees of freedom = $n_M + n_F 4$
- where n_M and n_F are sample size of the male and female samples, respectively
- Do Generalized F-test with

$$\mathbf{F}_{cal} \sim F(2, n_M + n_F - 4)$$

Single Dummy (5)

RLS or Wald test is OK.

Accept => male and female share the same intercept and the same slope in the expenditure function

<u>Chow Test</u> is equivalent to the two-run generalized F-test (RLS)

(c) Pongsa Pornchaiwiseskul, Faculty of Economics, Chulalongkorn University

Single Dummy (6)

Chow Test (cont'd)

 $F_{cal} = \frac{SSR_T - (SSR_M + SSR_F)}{SSR_M + SSR_F} \frac{n_M + n_F - 4}{2}$

~ $F(2, n_M + n_F - 4)$ where SSR_M and SSR_F are the sum of squared residuals from the tow separate runs and SSR_T is generated from OLS run on the stacked data set

Single Dummy (7)

Stacked data set

(c) Pongsa Pornchaiwiseskul, Faculty of Economics, Chulalongkorn University

Single Dummy (8)

Chow Test (cont'd)

- Note that $SSR_M + SSR_F$ is the same as SSR of the unrestricted model and SSR_T is the SSR of the restricted model.
- It is referred to as Chow's Breakpoint test in Eviews.

Single Dummy (9)

Partial Chow Test

<u>Case 1</u> the slopes are identical. Only the intercept could be different

$$\begin{split} EXP_i &= \beta_1 MALE_i + \gamma_1 (1 - MALE_i) + \beta_2 INC_i + \varepsilon_i \\ H_0 &: \beta_1 = \gamma_1 \\ H_1 &: \beta_1 \neq \gamma_1 \\ F_{cal} \sim F(1, n_M + n_F - 3) \end{split}$$

(c) Pongsa Pornchaiwiseskul, Faculty of Economics, Chulalongkorn University

Single Dummy (10)

Partial Chow Test

<u>Case 2</u> the intercepts are identical. Only the slope could be different

$$\begin{split} EXP_i &= \beta_1 + \beta_2 MALE_i \bullet INC_i \\ &+ \gamma_2 (1 - MALE_i) \bullet INC_i + \mathcal{E}_i \\ H_0 : \beta_2 &= \gamma_2 \\ H_1 : \beta_2 \neq \gamma_2 \\ F_{cal} \sim F(1, n_M + n_F - 3) \end{split}$$

(c) Pongsa Pornchaiwiseskul, Faculty of Economics, Chulalongkorn University

Multi-dummies (1)

Expenditure also depends on Province they live. Define BKK=1 if the observation is in Bangkok. Otherwise, BKK=0. **Unrestricted Model** $EXP_i = \alpha_1 MALE_i BKK_i + \beta_1 MALE_i (1 - BKK_i)$ $+ \gamma_1 (1 - MALE_i) BKK_i$ $+\delta_1(1-MALE_i)(1-BKK_i)$ $+ \alpha_2 MALE_i \bullet INC_i + \gamma_2 (1 - MALE_i) \bullet INC_i + \varepsilon_i$ (c) Pongsa Pornchaiwiseskul, Faculty of Economics, 13 Chulalongkorn University

Multi-dummies (2)

Assumption

- The slope depends only on the gender not location but the intercept could depend on both gender and province.
- Test if neither gender nor province has no effect on the expenditure.

```
H_0: \alpha_1 = \beta_1 = \gamma_1 = \delta_1, \alpha_2 = \gamma_2H_1: \alpha_1 \neq \beta_1 \neq \gamma_1 \neq \delta_1, \alpha_2 \neq \gamma_2
```

Multi-dummies (3)

Restricted Model

 $EXP_i = \alpha_1 + \alpha_2 INC_i + \varepsilon_i$ Do F-test using

 $F_{cal} \sim F(4, n_M + n_F - 6)$

(c) Pongsa Pornchaiwiseskul, Faculty of Economics, Chulalongkorn University

Incremental Setting (1)

So far, the above setting of dummy variables is of "switching" type. A dummy variable is used to select the appropriate parameter for each observation. Another setting is "incremental" type.

Incremental Setting (2)

Example Expenditure Function

 $EXP_{i} = \gamma_{1} + \delta_{1}MALE_{i}$ $+ \gamma_{2}INC_{i} + \delta_{2}MALE_{i} \bullet INC_{i} + \varepsilon_{i}$ Note that γ_{i}, γ_{i} are the intercept and slope for female

 γ_1 , γ_2 are the intercept and slope for female δ_1 is the intercept deviation for male δ_2 is the slope deviation for male

> (c) Pongsa Pornchaiwiseskul, Faculty of Economics, Chulalongkorn University

Multi-category Variable (1)

Examples

- Color: RED, BLUE, GREEN
- Day-of-Week: Mo,Tu,We,Th,Fr

Question

Price volatility of a certain day depends on whether it is a week-beginning day, a mid-week day or a week-ending day.

Multi-category Variable (2)

Define

- STD = 1 if the day is a week-starting day = 0, otherwise.
- MID=1 if it is a mid-week day
 - = 0, otherwise.
- END= 1 if it is a week-ending day = 0, otherwise.

Note that STD+MID+END=1 always and one of the dummies could be eliminated

(c) Pongsa Pornchaiwiseskul, Faculty of Economics, Chulalongkorn University

Multi-category Variable (3)

Switching Setting

$$VOL_{i} = \beta_{1}STD_{i} + \beta_{2}STD_{i} \bullet VAL_{i}$$
$$+ \gamma_{1}MID_{i} + \gamma_{2}MID_{i} \bullet VAL_{i}$$
$$+ \delta_{1}END_{i} + \delta_{2}END_{i} \bullet VAL_{i} + \varepsilon_{i}$$

Note that

 $\beta_1, \gamma_1, \delta_1$ are the intercepts for each day category $\beta_2, \gamma_2, \delta_2$ are the slopes for each day category

Multi-category Variable (4)

Incremental Setting

$$VOL_{i} = \beta_{1}STD_{i} + \beta_{2}STD_{i} \bullet VAL_{i}$$
$$+ \gamma_{1} + \gamma_{2} \bullet VAL_{i}$$
$$+ \delta_{1}END_{i} + \delta_{2}END_{i} \bullet VAL_{i} + \varepsilon_{i}$$

Note that

 $\beta_1 + \gamma_1, \gamma_1, \delta_1 + \gamma_1$ are the intercepts for each category $\beta_2 + \gamma_2, \gamma_{2/}, \delta_2 + \gamma_2$ are the slopes for each category Mid-week is used as the reference

(c) Pongsa Pornchaiwiseskul, Faculty of Economics, Chulalongkorn University

Multi-category Variable (5)

To test that there is no difference between categories (F-test or Chi-square test)

Switching Setting

 $H_0: \beta_1 = \gamma_1 = \delta_1, \beta_2 = \gamma_2 = \delta_2$

 $H_1: \beta_1 \neq \gamma_1 \neq \delta_1, \beta_2 \neq \gamma_2 \neq \delta_2$ Incremental Setting

$$H_0: \beta_1 = \delta_1 = 0, \beta_2 = \delta_2 = 0$$
$$H_1: \beta_1 \neq \delta_1 \neq 0, \beta_2 \neq \delta_2 \neq 0$$

Multi-category Variable (6)

 $F_{cal} \sim F(4, n_{STD} + n_{MID} + n_{END} - 6)$ where $n = n_{STD} + n_{MID} + n_{END}$ Chow Test for Switching Setting $F_{cal} = \frac{SSR_T - (SSR_{STD} + SSR_{MID} + SSR_{END})}{SSR_{STD} + SSR_{MID} + SSR_{END}} \frac{n - 6}{4}$ where SSR_{STD} , SSR_{MID} and SSR_{END} are SSR from separate runs and SSR_T is SSR from the stacked data

> (c) Pongsa Pornchaiwiseskul, Faculty of Economics, Chulalongkorn University

Piecewise Linear Model (1)

Conditional mean of Y is a piecewise linear function of X

Two kinks take place at X=a₁ and X=a₂ E(Y|x)

Chulalongkorn University

Piecewise Linear Model (2)

Switching Setting Define $D_0 = 1$ if X<a₁ = 0, otherwise. $D_1 = 1$ if $a_1 < X < a_2$ = 0, otherwise. $D_2 = 1$ if X> a_2 = 0, otherwise.

> (c) Pongsa Pornchaiwiseskul, Faculty of Economics, Chulalongkorn University

Piecewise Linear Model (3)

Switching Setting $Y_{i} = \beta_{1}D_{0i} + \beta_{2}X_{i}D_{0i} + (\beta_{1} + \beta_{2}a_{1})D_{1i} + \beta_{3}(X_{i} - a_{1})D_{1i} + \{\beta_{1} + \beta_{2}a_{1} + \beta_{3}(a_{2} - a_{1})\}D_{2i} + \{\beta_{4}(X_{i} - a_{2})D_{2i} + \varepsilon_{i}\}$

 β_1 is the intercept $\beta_2, \beta_3, \beta_4$ are the slope of each section

Piecewise Linear Model (4)

Piecewise Linear Model (5)

Incremental Setting Define $D_1 = 1$ if X>a_1 = 0, otherwise. $D_2 = 1$ if X> a_2 = 0, otherwise.

Piecewise Linear Model (6)

Incremental Setting (more simple) $Y_{i} = \beta_{1} + \beta_{2}X_{i} + \delta_{1}(X_{i} - a_{1})D_{1i} + \delta_{2}(X_{i} - a_{2})D_{2i} + \varepsilon_{i}$ $\beta_{1} \text{ is the intercept}$ $\beta_{2} \text{ is the slope of the first section}$ $\delta_{1}, \delta_{2} \text{ are the incremental of the slope}$

> (c) Pongsa Pornchaiwiseskul, Faculty of Economics, Chulalongkorn University

Piecewise Linear Model (7)

To test whether the function is single piece (slope is constant for all X)

Switching Setting

 $H_0:\beta_2=\beta_3=\beta_4$

 $H_1: \beta_2 \neq \beta_3 \neq \beta_4$ <u>Incremental Setting</u>

 $H_0: \delta_1 = \delta_2 = 0$ $H_1: \delta_1 \neq \delta_2 \neq 0$

Non-linear Approximation to a Piecewise Linear Model (1)

In general, the locations of kinks (a_1,a_2) are unknown. How can we estimate them?

Logistic Transformation of dummy variables for <u>Incremental Setting</u>

Approx. continuous function of X_i for D_{1i} is $\frac{1}{1+e^{-M(X_i-a_1)}}$

if M is a large positive value

(c) Pongsa Pornchaiwiseskul, Faculty of Economics, Chulalongkorn University

Non-linear Approximation to a Piecewise Linear Model (2)

(c) Pongsa Pornchaiwiseskul, Faculty of Economics, Chulalongkorn University

Non-linear Approximation to a Piecewise Linear Model (3)

Approx. non-linear regression

$$Y_{i} = \beta_{1} + \beta_{2}X_{i} + \delta_{1}\frac{X_{i} - a_{1}}{1 + e^{-M(X_{i} - a_{1})}} + \delta_{2}\frac{X_{i} - a_{2}}{1 + e^{-M(X_{i} - a_{2})}} + \varepsilon_{i}$$

Apply Non-linear LS. Another approx. is a polynomial regression.

(c) Pongsa Pornchaiwiseskul, Faculty of Economics, Chulalongkorn University