Model Mis-
 specification

Covered Topics

- Functional forms
- Underfitting
- Overfitting
- linearity vs non-linear (Ramsey's RESET)

Functional Forms (1)

- Linear linear
- linear log
- linear reciprocal
- quadratic (polynomial)
- interaction (cross terms)
- log linear
- log reciprocal
- \log quadratic
- $\log \log$
- logistic

Functional Forms (2)

log-log: $\quad \ln Y_{i}=\beta_{1}+\beta_{2} \ln X_{i}+\varepsilon_{i}$
log-linear: $\ln Y_{i}=\beta_{1}+\beta_{2} X_{i}+\varepsilon_{i}$ interaction:

$$
Y_{i}=\beta_{1}+\beta_{2} X_{2 i}+\beta_{3} X_{3 i}+\beta_{4}\left(X_{2 i} X_{3 i}\right)+\varepsilon_{i}
$$

logistic:

$$
\ln \frac{Y_{i}}{1-Y_{i}}=\beta_{1}+\beta_{2} X_{i}+\varepsilon_{i}
$$

Note that all are linear in parameters.
$==>$ OLS applies.

Functional Forms (3)

Assumption $==>$ form. For example,

- constant elasticity $=>$ double $\log (\log \log)$
- constant rate of change $=>\log$ linear
- Y between 0 and $1=>$ logistic
- variable slope $=>$ interaction or polynomial
- combination, e.g., log-log+interaction

There could be more than one that fit.

Box-Cox Transformation (1)

Box-Cox transformation for X

$$
B(X, \lambda)=\frac{X^{\lambda}-1}{\lambda}
$$

Note that $B(X, 1)=X-1$ and $B(X, 0)=\ln X<==$ Why?
Model

$$
\frac{Y_{i}^{\lambda}-1}{\lambda}=\beta_{1}+\beta_{2} \frac{X_{i}^{\lambda}-1}{\lambda}+\varepsilon_{i}
$$

$\lambda=1 \Rightarrow=>\operatorname{lin}-l i n$ model
$\lambda=0=>$ double log model
Otherwise, non-linear model (need NLS or MLE)

Box-Cox Transformation (2)

$$
\frac{Y_{i}^{\lambda}-1}{\lambda}=\beta_{1}+\beta_{2} \frac{X_{i}^{\mu}-1}{\mu}+\varepsilon_{i}
$$

- Use NLS or MLE to select the best value of (λ, μ).
- No need to pre-choose the specific functional form of the model.
- Require more computational effort. No big deal.

Explanatory Variables

The complete list of X's is purely based on theoretical reasons.
Underfitting $=$ exclusion of relevant variable X's

Overfitting $=$ inclusion of irrelevant variable X's
What are their effects?

Under-fitting (1)

Let X_{K} be the omitted variable with $\beta_{K} \neq 0$

$$
Y_{i}=\gamma_{1} X_{1 i}+\gamma_{2} X_{2 i}+\ldots+\gamma_{K-1} X_{K-1, i}+v_{i}
$$

Effects

OLS estimator of γ will be a biased estimator of β. if the omitted variable is related to the remaining X's. True?

Under-fitting (2)

Let $X_{K i}=\theta_{1} X_{1 i}+\theta_{2} X_{2 i}+\ldots+\theta_{K-1} X_{K-1, i}+\xi_{i}$ with $\theta_{k} \neq 0$ for some $k=1, \ldots, K-1$
If $\theta_{k} \neq 0, \hat{\gamma}_{k}$ will be a biased estimator of
β_{k} because $\gamma_{k}=\beta_{k}+\beta_{K} \theta_{k}$. Note that γ_{k} includes not only the effect of X_{k} but also that of the omitted variable $\left(X_{K}\right)$.

Under-fitting (3)

Substitute into the exact model

$$
\begin{aligned}
Y_{i}= & \beta_{1} X_{1 i}+\beta_{2} X_{2 i}+\ldots+\beta_{K-1} X_{K-1, i} \\
+ & \beta_{K}\left(\theta_{1} X_{1 i}+\theta_{2} X_{2 i}+\ldots+\theta_{K-1} X_{K-1, i}+\xi_{i}\right)+\varepsilon_{i} \\
= & \left(\beta_{1}+\beta_{K} \theta_{1}\right) X_{1 i}+\left(\beta_{2}+\beta_{K} \theta_{2}\right) X_{2 i} \\
& +\ldots+\left(\beta_{K-1}+\beta_{K} \theta_{K-1}\right) X_{K-1, i} \\
& +\left(\varepsilon_{i}+\beta_{K} \xi_{i}\right)
\end{aligned}
$$

Over-fitting (1)

Define $Z=$ irrelevant variable

$$
Y_{i}=\gamma_{1} X_{1 i}+\gamma_{2} X_{2 i}+\ldots+\gamma_{K} X_{K i}+\delta Z_{i}+v_{i}
$$

Since Z is known to be irrelevant, the real $\delta=0$.

Effects

- OLS estimator of γ is an unbiased estimator of β because $\gamma=\beta$.
- loss of accuracy. Why?

Mis-fitting (1)

Rules

- Include all the explanatory variables suggested by the underlying theories.
- Excluding them requires theoretical explanation.
- Even if the test statistic indicates insignificance, leave them in the model to avoid unbiasedness. Low statistic does not imply irrelevance. Data just can't reveal it.

Mis-fitting (2)

- Add variables to test their relevancy.

Remove the insignificant variables.
Further theories could be developed if the test indicates their significance.

Ramsey's RESET (1)

REgression Specification Error Test

- test the linear (in X) model against unspecified non-linear model

Concept

Using Taylor series expansion, a nonlinear model can be expressed as a polynomial model. If the exact model is non-linear, using a linear model is equivalent to omitting variables (high order terms)

Ramsey's RESET (2)

Test Equation

$$
\begin{aligned}
Y_{i}= & \beta_{1} X_{1 i}+\beta_{2} X_{2 i}+\ldots+\beta_{K} X_{K i} \\
& +\delta_{2} \hat{Y}_{i}^{2}+\delta_{3} \hat{Y}_{i}^{3}+\ldots+\delta_{M} \hat{Y}_{i}^{M}+\varepsilon_{i}
\end{aligned}
$$

Perform an F-test or Chi-square test

$$
\begin{aligned}
& H_{0}: \delta_{2}=\delta_{3}=\ldots=\delta_{M}=0 \\
& H_{1}: \delta_{2} \neq \delta_{3} \neq \ldots \neq \delta_{M} \neq 0
\end{aligned}
$$

EViews can do RESET.

Ramsey's RESET (3)

Notes

- Start with a square term
- The highest order M must be preselected. $M-1$ terms added.
- Reject $\mathrm{H}_{0} \Rightarrow>$ need a new model
- The test does not suggest the form of a new model. Try a polynomial order M.

Model

Selection Criteria

Covered Topics

- Criteria

- Adding/dropping variables
- Double linear against double log
- Linear with different X's
(c) Pongsa Pornchaiwiseskul, Faculty of Economics,

Chulalongkorn University

Forecasting Error

Forecasting error $=Y_{i}-\hat{Y}_{i}$
Linear model $\hat{Y}_{i}=\hat{\beta}_{1} X_{1 i}+\hat{\beta}_{2} X_{2 i}+\ldots \hat{\beta}_{K} X_{K i}$
Double log

$$
\begin{aligned}
\widehat{\ln Y_{i}} & =\hat{\beta}_{1} \ln X_{1 i}+\hat{\beta}_{2} \ln X_{2 i}+\ldots \hat{\beta}_{K} \ln X_{K i} \\
\hat{Y}_{i} & =\exp \left(\widehat{\ln Y_{i}}\right)
\end{aligned}
$$

General Selection Criteria (1)

Root Mean Square Error

$$
R M S E=\sqrt{\frac{1}{n} \sum_{i=1}^{n}\left(Y_{i}-\hat{Y}_{i}\right)^{2}}
$$

Mean Absolute Error

$$
\text { MAE }=\frac{1}{n} \sum_{i=1}^{n}\left|Y_{i}-\hat{Y}_{i}\right|
$$

General Selection Criteria (2)

Mean Absolute Percentage Error

$$
\text { MAPE }=\frac{1}{n} \sum_{i=1}^{n}\left|\frac{Y_{i}-\hat{Y}_{i}}{Y_{i}}\right|
$$

Theil's inequality coefficient

$$
U=\frac{\sqrt{\sum_{i=1}^{n}\left(Y_{i}-\hat{Y}_{i}\right)^{2}}}{\sqrt{\sum_{i=1}^{n} Y_{i}^{2}}+\sqrt{\sum_{i=1}^{n} \hat{Y}_{i}^{2}}}
$$

Relevancy of Variables (1)

Should $Z_{1}, Z_{2}, \ldots, Z_{M}$ be added?
Test Equation

$$
\begin{aligned}
Y_{i}= & \beta_{1} X_{1 i}+\beta_{2} X_{2 i}+\ldots+\beta_{K} X_{K i} \\
& +\delta_{1} Z_{1 i}+\delta_{2} Z_{2 i}+\ldots+\delta_{M} Z_{M i}+\varepsilon_{i}
\end{aligned}
$$

Perform an F-test or χ^{2}-test on

$$
\begin{aligned}
& H_{0}: \delta_{1}=\delta_{2}=\ldots=\delta_{M}=0 \\
& H_{1}: \delta_{1} \neq \delta 2 \neq \ldots \neq \delta_{M} \neq 0
\end{aligned}
$$

Relevancy of Variables (2)

Note that $\quad F_{\text {cal }} \sim F(M, n-(K+M))$

$$
\chi_{c a l}^{2} \sim \chi^{2}(M)
$$

EViews gives the 2-run F-test and the LR test.
Reject H_{0} implies that the variables may be relevant. It needs explanation. No harm to the unbiasedness of the estimator of parameters β which have been already included.
Another test equation is the old residuals against all the X's (old \& new) w/ a constant term.

Redundancy of Variables (1)

Should $X_{\mathrm{K}-\mathrm{M}+1}, X_{\mathrm{K}-\mathrm{M}+2}, \ldots, X_{\mathrm{K}}$ be dropped?
Test Equation

$$
\begin{aligned}
Y_{i}= & \beta_{1} X_{1 i}+\beta_{2} X_{2 i}+\ldots+\beta_{K-M} X_{K-M, i} \\
& +\beta_{K-M+1} X_{K-M}{ }^{11, i}+\ldots+\beta_{K} X_{K i}+\varepsilon_{i}
\end{aligned}
$$

Perform an F-test or χ^{2}-test on

$$
\begin{aligned}
& H_{0}: \beta_{K-M+1}=\beta_{K-M+2}=\ldots=\beta_{K}=0 \\
& H_{1}: \beta_{K-M+1} \neq \beta_{K-M+2} \neq \ldots \neq \beta_{K} \neq 0
\end{aligned}
$$

(c) Pongsa Pornchaiwiseskul, Faculty of Economics,

Chulalongkorn University

Redundancy of Variables (2)

Note that

$$
\begin{aligned}
& F_{c a l} \sim F(M, n-K) \\
& \chi_{c a l}^{2} \sim \chi^{2}(M)
\end{aligned}
$$

EViews also gives 2-run F-test and LR test results.
Accept H_{0} does not imply that the variables are not relevant. It just says that they are redundant. With the other X's in the model, they are not needed to explain the variation of Y. If they are dropped, there might be estimation bias but no harm to prediction of Y .

MWD Test (1)

MacKinnon-White-Davidson Test
Choose between lin-lin and log-log with same X and Y

Model A

$$
Y_{i}=\beta_{1} X_{1 i}+\beta_{2} X_{2 i}+\ldots+\beta_{K} X_{K i}+\varepsilon_{i}
$$

Model B

$$
\ln Y_{i}=\gamma_{1} \ln X_{1 i}+\gamma_{2} \ln X_{2 i}+\ldots+\gamma_{K} \ln X_{K i}+\varepsilon_{i}
$$

MWD Test (2)

Note that R^{2} cannot be used to judge.
Given \hat{Y}_{i} the fitted value from Model A $\widehat{\ln Y_{i}}$ the fitted value from Model B
Define

$$
\begin{aligned}
Z_{A i} & =\ln \hat{Y}_{i}-\ln Y_{i} \\
Z_{B i} & =\hat{Y}_{i}-\exp \left(\widehat{\ln Y_{i}}\right)
\end{aligned}
$$

MWD Test (3)

Model A^{\prime}

$$
\begin{aligned}
Y_{i}=\beta_{1} X_{1 i} & +\beta_{2} X_{2 i}+\ldots+\beta_{K} X_{K i i} \\
& +\delta_{A} Z_{A i}+\varepsilon_{i}
\end{aligned}
$$

t -Test on $\quad H_{0}: \delta_{A}=0$

$$
H_{1}: \delta_{A} \neq 0
$$

Accept $\mathrm{H}_{0}=>$ double lin "encompasses" double log

MWD Test (4)

Model B'

$$
\begin{aligned}
\ln Y_{i}=\gamma_{1} \ln X_{1 i} & +\gamma_{2} \ln X_{2 i}+\ldots+\gamma_{K} \ln X_{K i} \\
& +\delta_{B} Z_{B i}++\varepsilon_{i}
\end{aligned}
$$

t -Test on $\quad H_{0}: \delta_{B}=0$

$$
H_{1}: \delta_{B} \neq 0
$$

Accept $\mathrm{H}_{0}=>$ double log "encompasses" double line

MWD Test (5)

Conclusion

	$\delta_{B}=0$	$\delta_{B} \neq 0$
$\delta_{A}=0$	No clear preference	Double linear is chosen
$\delta_{A} \neq 0$	Double log is chosen	Neither model good enough

J-test (1)

Davidson-MacKinnon's J-test
Choose between two linear models with
different set of explanatory variables but same dependent variable.
R^{2} cannot be used either.
$\underline{\text { Model C }} \quad Y_{i}=\beta_{1} X_{1 i}+\beta_{2} X_{2 i}+\ldots+\beta_{K} X_{K i}+\varepsilon_{i}$
Model D $Y_{i}=\gamma_{1} Z_{1 i}+\gamma_{2} Z_{2 i}+\ldots+\gamma_{L} Z_{L i}+\varepsilon_{i}$

J-test (2)

Model C'

$$
Y_{i}=\beta_{1} X_{1 i}+\beta_{2} X_{2 i}+\ldots+\beta_{K} X_{K i i}+\delta_{C} \hat{Y}_{D i}+\varepsilon_{i}
$$

where \hat{Y}_{i}^{D} is the fitted value from Model D
t -Test on $\quad H_{0}: \delta_{C}=0$

$$
H_{1}: \delta_{C} \neq 0
$$

Accept $\mathrm{H}_{0}=>$ model C "encompasses" model D

J-test (3)

Model D'

$$
Y_{i}=\gamma_{1} Z_{1 i}+\gamma_{2} Z_{2 i}+\ldots+\gamma_{L} Z_{L i}+\delta_{D} \hat{Y}_{C i}+\varepsilon_{i}
$$

where $\hat{Y}_{C i}$ is the fitted value from Model C
t -Test on

$$
\begin{aligned}
& H_{0}: \delta_{D}=0 \\
& H_{1}: \delta_{D} \neq 0
\end{aligned}
$$

Accept $\mathrm{H}_{0}=>\underset{\text { model D }}{ }$ "encompasses" model C

J-test (4)

Conclusion

	$\delta_{D}=0$	$\delta_{D} \neq 0$
$\delta_{C}=0$	No clear preference	Model C is chosen
$\delta_{C} \neq 0$	Model D is chosen	Neither model good enough

