Panel Data Regression Models

Covered Topics

- What is Panel Data?
- Pooled Regression
- Fixed Effect Models
- Random Effect Models
- Other Panel Data Models

What is Panel Data? (1)

- Multiple dimensioned
- Dimensions, e.g.,
-cross-section and time
-node-to-node
(c) Pongsa Pornchaiwiseskul, Faculty of Economics,

Chulalongkorn University

What is Panel Data? (2)

Node-to-Node Example
$Y_{i j}=$ flow from node i to node j
$\mathrm{X} 2_{\mathrm{ij}}=$ unit cost between node i and node j

$\mathrm{X} 3_{\mathrm{ij}}=$ capacity between node i and node j

What is Panel Data?(3)

with cross-section(i) and time (t) indices

\mathbf{i}	\mathbf{t}	$\mathbf{Y}_{\mathbf{i t}}$	$\mathbf{X 1}_{\mathbf{i t}}$	\ldots	$\mathbf{X K}_{\mathbf{i t}}$
1	1	Y_{11}	$\mathrm{X1}_{11}$	\ldots	XK_{11}
$:$	$:$	$:$	$:$	\ldots	$:$
1	$\mathrm{~T}_{1}$	$\mathrm{Y}_{1 \mathrm{~T} 1}$	$\mathrm{X}_{1 \mathrm{TI} 1}$	\ldots	$\mathrm{XK}_{1 \mathrm{~T} 1}$
$:$	$:$	$:$	$:$	\ldots	$:$
N	I	$\mathrm{Y}_{\mathrm{N} 1}$	$\mathrm{XI}_{\mathrm{N} 1}$	\ldots	$\mathrm{XK}_{\mathrm{N} 1}$
$:$	$:$	$:$	$:$	\ldots	$:$
N	T_{N}	$\mathrm{Y}_{\mathrm{NTN}}$	$\mathrm{X} 1_{\mathrm{NTN}}$	\ldots	$\mathrm{XK}_{\mathrm{NTN}}$

(c) Pongsa Pornchaiwiseskul, Faculty of Economics,

Balanced Panel Data

- Each cross-sections has equal number of time periods
or $\mathrm{T}_{1}=\mathrm{T}_{2}=\ldots=\mathrm{T}_{\mathrm{N}}$
- Simple Data Structure
- Less complicated computation

Linear Model for Panel Data (1)
 $Y_{i t}=\beta_{1 i t} X_{1 i t}+\beta_{2 i t} X_{2 i t}+\ldots+\beta_{K i t} X_{K i t}+\varepsilon_{i t}$

- beta coefficients could be
time-invariant: $\quad \beta_{k i t}=\beta_{k i}$ for $\forall t$ section-invariant: $\beta_{k i t}=\beta_{k t}$ for $\forall i$ both :

$$
\beta_{k i t}=\beta_{k} \text { for } \forall i, t
$$

Linear Model for Panel Data (2)

- variance of error terms could be
time-invariant : $\quad V\left(\varepsilon_{i t}\right)=\sigma_{i}^{2}$ for $\forall t$ section-invariant: $V\left(\varepsilon_{i t}\right)=\sigma_{t}^{2}$ for $\forall i$ both :

$$
V\left(\varepsilon_{i t}\right)=\sigma^{2} \text { for } \forall i, t
$$

Pooled Regression (1)

General Assumption:
$Y_{i t}=\beta_{1} X_{1 i t}+\beta_{2} X_{2 i t}+\ldots+\beta_{K} X_{K i t}+\varepsilon_{i t}$ where

1) all the β coefficients are both time and cross-sectional invariant

Pooled Regression (2)

2) homoscedastic error terms

$$
V\left(\varepsilon_{i t}\right)=\sigma^{2} \text { for all } i, t
$$

or it is also time-invariant and section-invariant
=> OLS applies.

Pooled Regression (2)

\mathbf{i}	\mathbf{t}	$\mathbf{Y}_{\mathbf{i t}}$	$\mathbf{X 1}_{\mathbf{i t}}$	\ldots	$\mathbf{X K}_{\mathbf{i t}}$
1	1	Y_{11}	XI_{11}	\ldots	XK_{11}
1	2	Y_{12}	X_{12}	\ldots	XK_{12}
$:$	$:$	$:$	$:$	\ldots	$:$
1	T	$\mathrm{Y}_{1 \mathrm{~T}}$	$\mathrm{X}_{1 \mathrm{~T}}$	\ldots	$\mathrm{XK}_{1 \mathrm{~T}}$
$:$	$:$	$\dot{\mathrm{Y}}$	$:$		$:$
N	I	$\mathrm{Y}_{\mathrm{N} 1}$	$\mathrm{XI}_{\mathrm{N} 1}$	\ldots	$\mathrm{XK}_{\mathrm{N} 1}$
N	2	$\mathrm{Y}_{\mathrm{N} 2}$	$\mathrm{X}_{\mathrm{N} 2}$	\ldots	$\mathrm{XK}_{\mathrm{N} 2}$
$:$	$:$	$:$	$:$	\ldots	$:$
N	T	Y_{NT}	$\mathrm{X} 1_{\mathrm{NT}}$	\ldots.	$\mathrm{XK}_{\mathrm{NT}}$

(c) Pongsa Pornchaiwiseskul, Faculty of Economics,

Fixed Effect Models (1)

Also called LS Dummy Variable
(LSDV) Model. X_{1} is constant.
$Y_{i t}=\beta_{1 i}+\beta_{2} X_{2 i t}+\ldots+\beta_{K} X_{K i t}+\varepsilon_{i t}$

1) all the β coefficients are timeinvariant and cross-sectional invariant except that β_{1} is sectionvariant but time-invariant

Fixed Effect Models (2)

2) homoscedastic error terms

$$
V\left(\varepsilon_{i t}\right)=\sigma^{2} \text { for all } i, t
$$

or it is time-invariant and sectioninvariant

$=>$ OLS applies if dummy variables are introduced.

Fixed Effect Models (3)

Equivalent LSDV

$$
\begin{aligned}
& Y_{i t}= \beta_{11} D_{1 i t}+\beta_{12} D_{2 i t}+\ldots+\beta_{1 N} D_{\text {Nit }} \\
&+\beta_{2} X_{2 i t}+\ldots+\beta_{K} X_{K i t}+\varepsilon_{i t} \\
& \text { where }
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{D}_{\mathrm{jit}} & =1 \text { if } \mathrm{i}=\mathrm{j}, \mathrm{j}=1, \ldots, \mathrm{~N} \\
& =0 \text { otherwise }
\end{aligned}
$$

Note that
$\mathrm{D}_{1 \mathrm{it}}+\mathrm{D}_{2 \mathrm{it}}+\ldots+\mathrm{D}_{\mathrm{Nit}}=1$ for all i, t

Fixed Effect Models (4)

\mathbf{i}	\mathbf{t}	$\mathbf{Y}_{\mathbf{i t}}$	$\mathbf{D}_{\mathbf{1 i t}}$	\ldots	$\mathbf{D}_{\text {Nit }}$
1	1	Y_{11}	1	\ldots	0
$:$	$:$	$:$	$:$	\ldots	$:$
1	$\mathrm{~T}_{1}$	$\mathrm{Y}_{1 \mathrm{~T} 1}$	1	\ldots	0
$:$	$:$	$:$	$:$		$:$
N	1	$\mathrm{Y}_{\mathrm{N} 1}$	0	\ldots	1
$:$	$:$	$:$	$:$	\ldots	$:$
N	T_{N}	$\mathrm{Y}_{\mathrm{NTN}}$	0	\ldots	1

Fixed Effect Models (5)

Alternative form of FEM

$$
Y_{i t}=\beta_{1 t}+\beta_{2} X_{2 i t}+\ldots+\beta_{K} X_{K i t}+\varepsilon_{i t}
$$

Note that β_{1} is time-variant but section-invariant, instead Equivalent LSDV for this FEM is as follows:

Fixed Effect Models (6)

Equivalent LSDV

$$
\begin{aligned}
Y_{i t}= & \beta_{11} D_{1 i t}+\beta_{11} D_{2 i t}+\ldots+\beta_{1 T} D_{T i t} \\
& +\beta_{2} X_{2 i t}+\ldots+\beta_{K} X_{K i t}+\varepsilon_{i t}
\end{aligned}
$$

where

$$
\begin{aligned}
\mathrm{D}_{\mathrm{jit}} & =1 \text { if } \mathrm{t}=\mathrm{j}, \mathrm{j}=1, \ldots, \mathrm{~T} \\
& =0 \text { otherwise }
\end{aligned}
$$

Note that

Fixed Effect Models (7)

Common Problems

- many dummy variables required
- multi-collinearity problem likely
- interpretation of variant coefficients
- What if error terms are heteroscedastic?

Fixed Effect Models (8)

Heteroscedasticity
-cross-section weight

$$
V\left(\varepsilon_{i t}\right)=\sigma_{i}^{2} \text { for } \forall \mathrm{t}
$$

-time weight

$$
\begin{aligned}
& \qquad V\left(\varepsilon_{i t}\right)=\sigma_{t}^{2} \text { for } \forall \mathrm{i} \\
& =>\mathrm{WLS} \text { applies }
\end{aligned}
$$

Fixed Effect Models (9)

Heteroscedasticity

-cross-section covarince

$$
\operatorname{COV}\left(\varepsilon_{i t}, \varepsilon_{j t}\right)=\sigma_{i j}=\sigma_{j i} \text { for } \forall \mathrm{t}
$$

-auto-correlation

$$
\begin{aligned}
& \quad \operatorname{COV}\left(\varepsilon_{i s}, \varepsilon_{i t}\right)=\sigma_{s t}=\sigma_{t s} \text { for } \forall \mathrm{i} \\
& =>\text { FGLS applies }
\end{aligned}
$$

Random Effect Models (1)

 or REM for short. Also known as Error Component Models (ECM). X_{1} is also constant.$Y_{i t}=\beta_{1 i}+\beta_{2} X_{2 i t}+\ldots+\beta_{K} X_{K i t}+\varepsilon_{i t}$
Similar to FEM except that
$\beta_{1 \mathrm{i}}=\beta_{1}+\xi_{\mathrm{i}}$
where ξ_{i} is cross-sectional variation

Random Effect Models (2)

Case $1 \mathrm{~V}\left(\xi_{\mathrm{i}}\right)$ is section-invariant and $\mathrm{C}\left(\varepsilon_{\mathrm{it}} \xi_{\mathrm{i}}\right)$ is invariant

$$
\begin{aligned}
& Y_{i t}=\beta_{1}+\beta_{2} X_{2 i t}+\ldots+\beta_{K} X_{K i t}+\varepsilon_{i t}^{\prime} \\
& \text { where } \varepsilon_{i t}^{\prime}=\varepsilon_{i t}+\xi_{i}
\end{aligned}
$$

Random Effect Models (3)

Note that
$\mathrm{V}\left(\varepsilon_{i t}^{\prime}\right)=\mathrm{V}\left(\varepsilon_{i t}\right)+\mathrm{V}\left(\xi_{i}\right)+2 C\left(\varepsilon_{i t}, \xi_{i}\right)$
$\mathrm{V}\left(\varepsilon_{i t}^{\prime}\right)$ is invariant.

$=>$ OLS applies. Trivial.

Random Effect Models (4)

 Case $2 \mathrm{~V}\left(\xi_{\mathrm{i}}\right)$ is section-variant and/or $\mathrm{C}\left(\varepsilon_{\mathrm{it}} \xi_{\mathrm{i}}\right)$ is section-variant Note that $\mathrm{V}\left(\varepsilon_{i t}^{\prime}\right)$ is section-variant.Error term is heteroscedastic => FGLS applies. How?

$$
V\left(\varepsilon^{\prime}\right)=\left[\begin{array}{ccc:ccc:ccc}
\sigma_{1}^{2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & \ddots & 0 & 0 & \ddots & 0 & 0 & \ddots & 0 \\
0 & 0 & \sigma_{1}^{2} & 0 & 0 & 0 & 0 & 0 & 0 \\
\hdashline 0 & 0 & 0 & \ddots & 0 & 0 & 0 & 0 & 0 \\
0 & \ddots & 0 & 0 & \ddots & 0 & 0 & \ddots & 0 \\
0 & 0 & 0 & 0 & 0 & \ddots & 0 & 0 & 0 \\
\hdashline 0 & 0 & 0 & 0 & 0 & 0 & \sigma_{N}^{2} & 0 & 0 \\
0 & \ddots & 0 & 0 & \ddots & 0 & 0 & \ddots & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \sigma_{N}^{2}
\end{array}\right]
$$

Random Effect Models (5)

Case $3 \mathrm{~V}\left(\xi_{\mathrm{i}}\right)$ is section-variant and/or $\mathrm{C}\left(\varepsilon_{\mathrm{iti}} \xi_{\mathrm{j}}\right)$ is section-variant but $\varepsilon_{i t}=\varepsilon_{i}$
Note that $\mathrm{V}\left(\varepsilon_{i t}^{\prime}\right)$ is section - variant.
Error term is general
$=>$ FGLS applies. How?

$$
V\left(\varepsilon^{\prime}\right)=\left[\begin{array}{ccc:ccc:ccc}
\sigma_{1}^{2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & \ddots & 0 & 0 & \ddots & 0 & 0 & \ddots & 0 \\
0 & 0 & \sigma_{1}^{2} & 0 & 0 & 0 & 0 & 0 & 0 \\
\hdashline 0 & 0 & 0 & \ddots & 0 & 0 & 0 & 0 & 0 \\
0 & \ddots & 0 & 0 & \ddots & 0 & 0 & \ddots & 0 \\
0 & 0 & 0 & 0 & 0 & \ddots & 0 & 0 & 0 \\
\hdashline 0 & 0 & 0 & 0 & 0 & 0 & \sigma_{N}^{2} & 0 & 0 \\
0 & \ddots & 0 & 0 & \ddots & 0 & 0 & \ddots & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \sigma_{N}^{2}
\end{array}\right]
$$

FEM vs REM (1)

They are substitute if no theoretical preference. Note that

1) FEM is preferred when T is large and N is small.
2) T is small but N is large. Degree of freedom for FEM is small.
REM is more efficient.

FEM vs REM (2)

3) For T is small and N is large,

FEM is preferred if crosssectional variation $\left(\xi_{\mathrm{i}}\right)$ is nonrandom. Otherwise, REM is preferred.

FEM vs REM (3)

4) ξ_{i} and $X_{\text {kit }}$ are correlated. FEM yields unbiased estimator but REM yields biased estimator

Cross-sectional Heteroscedasticity (1)

$$
Y_{i t}=\beta_{1 i}+\beta_{2 i} X_{2 i t}+\ldots+\beta_{K i} X_{K i t}+\varepsilon_{i t}
$$

Assume time-invariant variancecovarinace for error terms.
In addition to possibility of different cross-section weights (variances), covariances between errors of cross sections could be non-zero.

Cross-sectional Heteroscedasticity (2)

$$
\begin{aligned}
& \mathrm{V}\left(\varepsilon_{\mathrm{it}}\right)=\sigma_{\mathrm{j}}^{2} \\
& \operatorname{Cov}\left(\varepsilon_{\mathrm{it}}, \varepsilon_{\mathrm{j} t}\right)=\sigma_{\mathrm{ij}} \text { for all t }
\end{aligned}
$$

or they are time-invariant but sectionvariant
=> WLS will not applies as there are non-zero covariances between observation. Need GLS or FGLS.

