Panel Data Regression Models

(c) Pongsa Pornchaiwiseskul, Faculty of Economics, Chulalongkorn University

Covered Topics

- What is Panel Data?
- Pooled Regression
- Fixed Effect Models
- Random Effect Models
- Other Panel Data Models

What is Panel Data? (1)

- Multiple dimensioned
- Dimensions, e.g., -cross-section and time -node-to-node

(c) Pongsa Pornchaiwiseskul, Faculty of Economics, Chulalongkorn University

What is Panel Data? (2)

Node-to-Node Example

- $Y_{ij} =$ flow from node i to node j
- $X2_{ij}$ = unit cost between node i and node j
- $X3_{ij}$ = capacity between node i and node j

(c) Pongsa Pornchaiwiseskul, Faculty of Economics, Chulalongkorn University

What is Panel Data?(3)

with cross-section(i) and time(t) indices

i	t	Y _{it}	X1 _{it}	••••	XK _{it}
1	1	Y ₁₁	X1 ₁₁	•••	XK ₁₁
•	•	•	•	•••	•
1	T ₁	Y _{1T1}	$X1_{1T1}$	•••	XK _{1T1}
•	•	•	•	••••	•
Ν	1	Y _{N1}	X1 _{N1}	•••	XK _{N1}
•	•	•	•	•••	•
Ν	T _N	Y _{NTN}	X1 _{NTN}		XK _{NTN}

(c) Pongsa Pornchaiwiseskul, Faculty of Economics, Chulalongkorn University

Balanced Panel Data

• Each cross-sections has equal number of time periods

or $T_1 = T_2 = ... = T_N$

- Simple Data Structure
- Less complicated computation

Linear Model for Panel Data (1)

 $Y_{it} = \beta_{1it} X_{1it} + \beta_{2it} X_{2it} + \dots + \beta_{Kit} X_{Kit} + \varepsilon_{it}$

• beta coefficients could be

time - invariant : $\beta_{kit} = \beta_{ki}$ for $\forall t$ section - invariant : $\beta_{kit} = \beta_{kt}$ for $\forall i$ both : $\beta_{kit} = \beta_k$ for $\forall i, t$

> (c) Pongsa Pornchaiwiseskul, Faculty of Economics, Chulalongkorn University

Linear Model for Panel Data (2)

• variance of error terms could be

time - invariant : $V(\varepsilon_{it}) = \sigma_i^2$ for $\forall t$ section - invariant : $V(\varepsilon_{it}) = \sigma_t^2$ for $\forall i$ both : $V(\varepsilon_{it}) = \sigma^2$ for $\forall i, t$

Pooled Regression (1)

General Assumption:

 $Y_{it} = \beta_1 X_{1it} + \beta_2 X_{2it} + \dots + \beta_K X_{Kit} + \varepsilon_{it}$ where

1) all the β coefficients are both time and cross-sectional invariant

(c) Pongsa Pornchaiwiseskul, Faculty of Economics, Chulalongkorn University

Pooled Regression (2)

2) homoscedastic error terms

$$V(\mathbf{\mathcal{E}}_{it}) = \mathbf{\sigma}^2$$
 for all i,t

or it is also time-invariant and section-invariant

=> OLS applies.

Pooled Regression (2)

i	t	Y _{it}	X1 _{it}	••••	XK _{it}
1	1	Y ₁₁	X1 ₁₁		XK ₁₁
1	2	Y ₁₂	X1 ₁₂	•••	XK ₁₂
:	:	:	:		•
1	Т	Y _{1T}	X1 _{1T}	•••	XK _{1T}
:	:	$\dot{\mathbf{V}}$:	V	•
N	1	Y _{N1}	X1 _{N1}	. .	XK _{N1}
N	2	Y _{N2}	X1 _{N2}	••••	XK _{N2}
:	:	:	:		•
N	Т	Y _{NT}	$X1_{_{NT}}$	••••	XK _{NT}

(c) Pongsa Pornchaiwiseskul, Faculty of Economics, Chulalongkorn University

Fixed Effect Models (1) Also called LS Dummy Variable (LSDV) Model. X₁ is constant.

 $Y_{it} = \beta_{1i} + \beta_2 X_{2it} + \dots + \beta_K X_{Kit} + \varepsilon_{it}$

1) all the β coefficients are timeinvariant and cross-sectional invariant except that β_1 is sectionvariant but time-invariant

Fixed Effect Models (2)

2) homoscedastic error terms

 $V(\boldsymbol{\mathcal{E}}_{it}) = \boldsymbol{\sigma}^2$ for all i,t

or it is time-invariant and sectioninvariant

=> OLS applies if dummy variables are introduced.

(c) Pongsa Pornchaiwiseskul, Faculty of Economics, Chulalongkorn University

Fixed Effect Models (3) Equivalent LSDV $Y_{it} = \beta_{11}D_{1it} + \beta_{12}D_{2it} + ... + \beta_{1N}D_{Nit}$ $+ \beta_2 X_{2it} + ... + \beta_K X_{Kit} + \varepsilon_{it}$ where $D_{jit} = 1$ if i=j, j=1,...,N = 0 otherwise Note that $D_{1it} + D_{2it} + ... + D_{Nit} = 1$ for all i,t

Fixed Effect Models (4)

i	t	Y _{it}	D _{1it}	••••	D _{Nit}
1	1	Y ₁₁	1	•••	0
:	•	•	•	•••	•
1	T ₁	Y _{1T1}	1	•••	0
:	•	:	•		:
N	1	Y _{N1}	0	•••	1
:	•	•	•	•••	•
N	T _N	Y _{NTN}	0	••••	1

(c) Pongsa Pornchaiwiseskul, Faculty of Economics, Chulalongkorn University

Fixed Effect Models (5) Alternative form of FEM

 $Y_{it} = \beta_{1t} + \beta_2 X_{2it} + \dots + \beta_K X_{Kit} + \varepsilon_{it}$

Note that β_1 is time-variant but section-invariant, instead

Equivalent LSDV for this FEM is as follows:

Fixed Effect Models (6) Equivalent LSDV $Y_{it} = \beta_{11}D_{1it} + \beta_{11}D_{2it} + ... + \beta_{1T}D_{Tit}$

$$+\beta_2 X_{2it} + \dots + \beta_K X_{Kit} + \varepsilon_{it}$$

where

$$D_{jit} = 1$$
 if t=j, j=1,...,T
= 0 otherwise

Note that

$$D_{1it} + D_{2it} + \dots + D_{Tit} = 1$$
 for all i,t

Chulalongkorn University

Fixed Effect Models (7)

Common Problems

- many dummy variables required
- multi-collinearity problem likely
- interpretation of variant coefficients
- What if error terms are heteroscedastic?

Fixed Effect Models (8)

Heteroscedasticity -cross-section weight $V(\varepsilon_{it}) = \sigma_i^2 \text{ for } \forall t$ -time weight $V(\varepsilon_{it}) = \sigma_t^2 \text{ for } \forall i$

=>WLS applies

(c) Pongsa Pornchaiwiseskul, Faculty of Economics, Chulalongkorn University

Fixed Effect Models (9)

Heteroscedasticity

-cross-section covarince

 $\operatorname{COV}(\varepsilon_{it}, \varepsilon_{jt}) = \sigma_{ij} = \sigma_{ji} \text{ for } \forall t$

-auto-correlation

$\operatorname{COV}(\varepsilon_{is}, \varepsilon_{it}) = \sigma_{st} = \sigma_{ts} \text{ for } \forall i$

=>FGLS applies

Random Effect Models (1)

or REM for short. Also known as Error Component Models (ECM). X₁ is also constant.

$$Y_{it} = \beta_{1i} + \beta_2 X_{2it} + \dots + \beta_K X_{Kit} + \varepsilon_{it}$$

Similar to FEM except that $\beta_{1i} = \beta_1 + \xi_i$ where ξ_i is cross-sectional variation

> (c) Pongsa Pornchaiwiseskul, Faculty of Economics, Chulalongkorn University

Random Effect Models (2)

<u>Case 1</u> V(ξ_i) is section-invariant and C(ϵ_{it} , ξ_i) is invariant

 $Y_{it} = \beta_1 + \beta_2 X_{2it} + \dots + \beta_K X_{Kit} + \varepsilon'_{it}$ where $\varepsilon'_{it} = \varepsilon_{it} + \xi_i$

Random Effect Models (3)

Note that $V(\varepsilon'_{it}) = V(\varepsilon_{it}) + V(\xi_i) + 2C(\varepsilon_{it}, \xi_i)$ $V(\varepsilon'_{it})$ is invariant.

=> OLS applies. Trivial.

(c) Pongsa Pornchaiwiseskul, Faculty of Economics, Chulalongkorn University

Random Effect Models (4) <u>Case 2</u> V(ξ_i) is section-variant and/or C(ε_{it} , ξ_i) is section-variant Note that V(ε'_{it}) is section - variant. Error term is heteroscedastic => FGLS applies. How?

(c) Pongsa Pornchaiwiseskul, Faculty of Economics, Chulalongkorn University 25

Random Effect Models (5) <u>Case 3</u> $V(\xi_i)$ is section-variant and/or $C(\varepsilon_{it}, \xi_i)$ is section-variant but $\varepsilon_{it} = \varepsilon_i$ Note that $V(\varepsilon'_{it})$ is section - variant. Error term is general

=> FGLS applies. How?

(c) Pongsa Pornchaiwiseskul, Faculty of Economics, Chulalongkorn University

FEM vs REM (1)

- They are substitute if no theoretical preference. Note that
- 1) FEM is preferred when T is large and N is small.
- 2) T is small but N is large. Degree of freedom for FEM is small. REM is more efficient.

FEM vs REM (2)

3) For T is small and N is large,
FEM is preferred if cross-sectional variation (ξ_i) is non-random. Otherwise, REM is preferred.

(c) Pongsa Pornchaiwiseskul, Faculty of Economics, Chulalongkorn University

FEM vs REM (3)

4) ξ_i and X_{kit} are correlated. FEM yields unbiased estimator but REM yields biased estimator

Cross-sectional Heteroscedasticity (1)

$$Y_{it} = \beta_{1i} + \beta_{2i} X_{2it} + \dots + \beta_{Ki} X_{Kit} + \varepsilon_{it}$$

Assume time-invariant variancecovarinace for error terms.

In addition to possibility of different cross-section weights (variances), covariances between errors of cross sections could be non-zero.

31

Chulalongkorn University

Cross-sectional Heteroscedasticity (2)

$$V(\boldsymbol{\mathcal{E}}_{it}) = \boldsymbol{\sigma}_{j}^{2}$$

Cov(\boldsymbol{\mathcal{E}}_{it}, \boldsymbol{\mathcal{E}}_{jt}) = \boldsymbol{\sigma}_{jt} for all t

or they are time-invariant but sectionvariant

=> WLS will not applies as there are non-zero covariances between observation. Need GLS or FGLS.

> (c) Pongsa Pornchaiwiseskul, Faculty of Economics, Chulalongkorn University