GMM Method (Single-equation)
 Pongsa Pornchaiwiseskul
 Faculty of Economics
 Chulalongkorn University

Covered Topics

- Violation of $C(\mathbf{X}, \boldsymbol{\mathcal { E }})=0$
- Instrument Variable (IV)

Method

- Generalized Method of Moments (GMM)

Stochastic X (1)

Given that, for some $\mathrm{k}, \mathrm{X}_{\mathrm{k}}$ is random

$$
\begin{aligned}
\operatorname{COV}\left(X_{k}, \varepsilon\right) & =\mathrm{E}\left(\left(X_{k}-\mu_{k}\right) \varepsilon\right) \\
& \left.=\mathrm{E}\left(X_{k} \varepsilon\right)-\mu_{k} E / \bar{\varepsilon}\right) \\
& =\mathrm{E}\left(X_{k} \varepsilon\right)
\end{aligned}
$$

Stochastic X (2)

If some or all X's are random, additional assumptions about \mathbf{X} are needed. One of them is
$\mathrm{E}\left(\mathrm{X}_{\mathrm{ki}} \boldsymbol{\varepsilon}_{\mathrm{i}}\right)=0 \quad \forall k, i==>\hat{\boldsymbol{\beta}}$ is consistent or $\mathrm{C}\left(\mathrm{X}_{\mathrm{ki}}, \varepsilon_{\mathrm{i}}\right)=0$

Violation of $\mathbf{C}(\mathbf{X}, \boldsymbol{\mathcal { E }})=\mathbf{0}$

OLS estimator is inconsistent (invalid).
Why?

$$
\begin{aligned}
\hat{\beta}_{O L S} & =\left(X^{T} X\right)^{-1} X^{T} Y \\
& =\left(X^{T} X\right)^{-1} X^{T}(X \beta+\varepsilon) \\
& =\beta+\left(X^{T} X\right)^{-1} X^{T} \varepsilon
\end{aligned}
$$

Violation of $\mathbf{C}(\mathbf{X}, \boldsymbol{E})=\mathbf{0}$

Take expectation on both sides.

$$
\begin{gathered}
E\left(\hat{\beta}_{O L S}\right)=\beta+E\left(\left(X^{T} X\right)^{-1} X^{T} \varepsilon\right) \\
\quad \neq \beta \\
\hat{\beta}_{O L S} \quad \text { is biased in general }
\end{gathered}
$$

Violation of $\mathbf{C}(\mathbf{X}, \boldsymbol{\varepsilon})=\mathbf{0}$

Take conditional variance on both sides.

$$
\begin{aligned}
V\left(\hat{\beta}_{O L S} \mid X\right) & =\left(X^{T} X\right)^{-1} X^{T} V(\varepsilon \mid X) X\left(X^{T} X\right)^{-1} \\
& =\sigma^{2}\left(X^{T} X\right)^{-1} \\
V\left(\sqrt{n} \hat{\beta}_{O L S} \mid X\right) & =\sigma^{2}\left(\frac{X^{T} X}{n}\right)^{-1}
\end{aligned}
$$

Unconditional variance=??

Proxy of \mathbf{X}_{k}

Definition

$$
\begin{aligned}
& X_{k}^{\prime} \text { is proxy of } X_{k} \text { if } \\
& \quad X_{k}=X_{k}^{\prime}+\xi_{k} \text { and } E\left(\xi_{k}\right)=0 \\
& \quad \operatorname{Cov}\left(X_{k}^{\prime}, \varepsilon\right)=0 \text { and } \operatorname{Cov}\left(X_{k}^{\prime}, \xi_{k}\right)=0 \\
& =\Rightarrow E\left(X_{k}^{\prime}\right)=E\left(X_{k}\right)
\end{aligned}
$$

Regression Model w/ violation $Y_{i}=\beta_{1} X_{1 i}+\beta_{2} X_{2 i}+\cdots+\beta_{K} X_{K i}+\varepsilon_{i}$ $\operatorname{Cov}\left(X_{K}, \varepsilon\right) \neq 0=>O L S$ is inconsistent

Regression Model w/o violation $Y_{i}=\beta_{1} X_{1 i}+\beta_{2} X_{2 i}+\cdots+\beta_{K} X_{K i}^{\prime}+\varepsilon_{i}^{\prime}$ where $\varepsilon_{i}^{\prime}=\varepsilon_{i}+\beta_{K} \xi_{K i}$
$\operatorname{Cov}\left(X_{K}^{\prime}, \varepsilon^{\prime}\right)=0==>O L S$ is consistent

How to get Proxy of X_{k} (1)

Assuming that the set of variables
\mathbf{Z} are uncorrelated with $\boldsymbol{\varepsilon}$, we can define the proxy as follows:

$$
\begin{aligned}
& X_{k i}=\mathbf{Z}_{i} \boldsymbol{\gamma}+\xi_{k i} \\
& \text { where } \mathbf{Z} \boldsymbol{\gamma} \text { is a proxy of } X_{k}
\end{aligned}
$$

How to get Proxy of X_{k} (2) Note that

1) it is equivalent to splitting the variable X_{k} into 2 parts, one part $(\mathbf{Z} \gamma)$ with no correlation with the original error term $(\boldsymbol{\mathcal { E }})$ and the other part (ξ) with the correlation.

How to get Proxy of X_{k} (3)

 Note that2) $\mathbf{Z} \boldsymbol{\gamma}$ will be a good proxy if it can explain most variation of X_{k}. Need high R ${ }^{2}$.
3) \mathbf{Z} is called the set (vector) of instrument variables.

Instrument Variables (1)
 Candidates

1) all X's which is non-random or random but uncorrelated with \mathcal{E}.
2) any variable outside the regression model which is uncorrelated to \mathcal{E}.

Instrument Variables (2)

Choices of IV's

1) availability of data 2) underlying theories
2) pure assumption

IV Estimation (1)

Steps

1) run OLS regression for

$$
X_{k i}=\mathbf{Z}_{i} \boldsymbol{\gamma}+\xi_{k i}
$$

2) get the fitted values for X_{k}

$$
\hat{X}_{k i}=\mathbf{Z}_{i} \hat{\gamma}
$$

where $\hat{\gamma}=\left(\mathbf{Z}^{T} \mathbf{Z}\right)^{-1} \mathbf{Z}^{T} \mathbf{X}_{K}$

IV Estimation (2)

3) use them as the proxy for $X_{k i}$

$$
Y_{i}=\beta_{1} X_{1 i}+\beta_{2} X_{2 i}+\cdots+\beta_{K} \hat{X}_{K i}+\varepsilon_{i}^{\prime}
$$

4) run OLS on the above regression model to get the estimate for β

IV Estimation (3)

Matrix Notation

$$
\begin{aligned}
& \begin{aligned}
\mathbf{Y} & =\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon} \\
& =\mathbf{U} \boldsymbol{\alpha}+\mathbf{V} \boldsymbol{\delta}+\boldsymbol{\varepsilon}
\end{aligned} \\
& \text { where } \mathbf{X}=[\mathbf{U} \mathbf{V}] \text { and } \boldsymbol{\beta}=\left[\begin{array}{l}
\boldsymbol{\alpha} \\
\boldsymbol{\delta}
\end{array}\right] \\
& \operatorname{Cov}(\mathbf{U}, \boldsymbol{\varepsilon})=\mathbf{0} \text { but } \operatorname{Cov}(\mathbf{V}, \boldsymbol{\varepsilon}) \neq \mathbf{0}
\end{aligned}
$$

IV Estimation (4)

Proxy of \mathbf{V}

$$
\begin{aligned}
& \hat{\mathbf{V}}=\mathbf{Z} \hat{\mathbf{\gamma}}=\mathbf{Z}\left(\mathbf{Z}^{T} \mathbf{Z}\right)^{-1} \mathbf{Z}^{T} \mathbf{V} \\
& \mathbf{Y}=\mathbf{U} \boldsymbol{\alpha}+\mathbf{A V} \mathbf{V}+\boldsymbol{\varepsilon}^{\prime} \\
& \text { where } \mathbf{A}=\mathbf{Z}\left(\mathbf{Z}^{T} \mathbf{Z}\right)^{-1} \mathbf{Z}^{T}=\mathbf{A}^{T}
\end{aligned}
$$

Note that $\mathbf{U}=\hat{\mathbf{U}}=\mathbf{A U}$ because \mathbf{U} is a subset of \mathbf{Z}

$$
\begin{aligned}
& \mathbf{Y}=\mathbf{A} \mathbf{U} \boldsymbol{\alpha}+\mathbf{A V} \boldsymbol{\delta}+\boldsymbol{\varepsilon}^{\prime} \\
& \mathbf{Y}=\mathbf{A X} \boldsymbol{X}+\boldsymbol{\varepsilon}^{\prime}
\end{aligned}
$$

IV Estimation (5)

IV Estimator

$$
\begin{aligned}
\hat{\boldsymbol{\beta}}_{I V} & =\left(\mathbf{X}^{T} \mathbf{A}^{T} \mathbf{A} \mathbf{X}\right) \mathbf{X}^{T} \mathbf{A}^{T} \mathbf{Y} \\
& =\left(\mathbf{X}^{T} \mathbf{Z}\left(\mathbf{Z}^{T} \mathbf{Z}\right)^{-1} \mathbf{Z}^{T} \mathbf{Z}\left(\mathbf{Z}^{T} \mathbf{Z}\right)^{-1} \mathbf{Z}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{A}^{T} \mathbf{Y} \\
& =\left(\mathbf{X}^{T} \mathbf{A} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{A}^{T} \mathbf{Y} \\
& =\left(\mathbf{X}^{T} \mathbf{A} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{A}^{T}(\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}) \\
& =\boldsymbol{\beta}+\left(\mathbf{X}^{T} \mathbf{A} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{A}^{T} \boldsymbol{\varepsilon}
\end{aligned}
$$

Note that $A^{T} A=A^{2}=A \cdots$ Asymptotically zero

IV Estimation (6)

Take variance on both sides

$$
\begin{aligned}
\mathbf{V}\left(\hat{\boldsymbol{\beta}}_{I V}\right) & =\sigma^{2}\left(\mathbf{X}^{T} \mathbf{A} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{A}^{T} \mathbf{A} \mathbf{X}\left(\mathbf{X}^{T} \mathbf{A X}\right)^{-1} \\
& =\sigma^{2}\left(\mathbf{X}^{T} \mathbf{A} \mathbf{X}\right)^{-1}
\end{aligned}
$$

$$
\hat{\mathbf{V}}\left(\hat{\boldsymbol{\beta}}_{I V}\right)=\hat{\sigma}^{2}\left(\mathbf{X}^{T} \mathbf{A X}\right)^{-1}
$$

where

$$
\hat{\sigma}^{2}=\frac{1}{n-K}\left(\mathbf{Y}-\mathbf{X} \hat{\boldsymbol{\beta}}_{I V}\right)^{T}\left(\mathbf{Y}-\mathbf{X} \hat{\boldsymbol{\beta}}_{I V}\right)
$$

IV Estimation (7)

Equivalence OLS
$\mathbf{A Y}=\mathbf{A X} \boldsymbol{\beta}+\mathbf{A} \boldsymbol{\varepsilon}$
$\hat{\boldsymbol{\beta}}_{\text {EQOLS }}=\left(\mathbf{X}^{T} \mathbf{A}^{T} \mathbf{A X}\right) \mathbf{X}^{T} \mathbf{A}^{T} \mathbf{A Y}=\hat{\boldsymbol{\beta}}_{I V}$
In EViews, IV method is the same as Two-sage Least Square (2SLS)
X's not in Instrument list have nonzero correlation with error terms

IV Estimation (8)

Note that

1) 2SLS estimation may yield negative R -squared even if there is a constant term or equivalent in the original regression equation. Why?

IV Estimation (9)

The model with proxy or transformed with matrix A may not have one.
2) IV does not need normality of the error term.
3) a constant term is also an IV

IV Estimation (10)

4) If $Z=$ all X plus other IV's from outside, IV method is exactly the same as OLS.

$$
\begin{aligned}
& \text { With } \hat{\mathbf{X}}=\mathbf{A X}=\mathbf{X} \\
& \begin{aligned}
\hat{\boldsymbol{\beta}}_{I V}= & \left(\hat{\mathbf{X}}^{\mathrm{T}} \hat{\mathbf{X}}\right)^{-1} \hat{\mathbf{X}}^{T} \mathbf{Y} \\
& =\left(\mathbf{X}^{\mathbf{T}} \mathbf{X}\right)^{-1} \mathbf{X}^{\mathbf{T}} \mathbf{Y}=\hat{\boldsymbol{\beta}}_{o L s}
\end{aligned}
\end{aligned}
$$

Weighted 2SLS (1)

Unweighted Model

$$
\mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{v}=\mathbf{U} \boldsymbol{\alpha}+\mathbf{V} \boldsymbol{\gamma}+\boldsymbol{v}
$$

where $\boldsymbol{v}_{i}=\frac{\varepsilon_{i}}{w_{i}}$ or $\mathrm{V}\left(\boldsymbol{v}_{i}\right)=\left(\frac{\sigma}{w_{i}}\right)^{2}$ and $\operatorname{Cov}(\mathbf{V}, \mathbf{v}) \neq \mathbf{0}$

Weighted 2SLS (2)

Weighted Model

$$
\begin{aligned}
& \mathbf{W} \mathbf{Y}=\mathbf{W} \mathbf{U} \boldsymbol{\alpha}+\mathbf{W} \mathbf{V} \boldsymbol{\gamma}+\mathbf{W} \boldsymbol{w}, \\
& \text { where } \mathbf{W}=\left[\begin{array}{cccc}
w_{1} & 0 & \cdots & 0 \\
0 & w_{2} & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & w_{n}
\end{array}\right]
\end{aligned}
$$

Weighted 2SLS (3)

$$
\begin{aligned}
& \hat{\boldsymbol{\beta}}_{W V}=\left(\mathbf{X}^{T} \mathbf{W}^{T} \mathbf{A} \mathbf{W}\right)^{-1} \mathbf{X}^{T} \mathbf{W}^{T} \mathbf{A} \mathbf{W} \mathbf{Y} \\
& \text { where } \mathbf{A}=\mathbf{W} \mathbf{Z}\left(\mathbf{Z}^{T} \mathbf{W}^{T} \mathbf{W} \mathbf{Z}\right)^{-1} \mathbf{Z}^{T} \mathbf{W}^{T} \\
& \hat{V}\left(\hat{\boldsymbol{\beta}}_{W V}\right)=\hat{\sigma}^{2}\left(\mathbf{X}^{T} \mathbf{W}^{T} \mathbf{A} \mathbf{W} \mathbf{X}\right)^{-1} \\
& \hat{\sigma}^{2}=\frac{1}{n-K}\left(\mathbf{W} \mathbf{Y}-\mathbf{W} \mathbf{X} \hat{\boldsymbol{\beta}}_{W V}\right)^{T}\left(\mathbf{W} \mathbf{Y}-\mathbf{W} \mathbf{X} \hat{\boldsymbol{\beta}}_{W V V}\right)
\end{aligned}
$$

GMM (1)

As an improvement over IV

- IV estimation method does not fully utilize the assumption or knowledge of zero correlation between \mathbf{Z} and the error term (ε).

GMM (2)

- IV method employs only one proxy from the whole set of Instrument Variables.
- A different subset of Z's can yield a different proxy. We don't have to use the whole set of Z's. We can give different weight to each Z.

GMM (3)

Concept

- Giving different weights to each Z is equivalent to mixing different subset of Z's
- For each Z, there will be associated matrix A. Need at least K Instrument Variables

GMM (4)

For each $\mathrm{IV} \mathrm{Z}_{m}$, it is expected that $\mathrm{E}\left(\mathrm{Z}_{m} \boldsymbol{\varepsilon}\right)=0$ for all m . That is,

$$
\begin{aligned}
& \mathrm{E}\left(\mathrm{Z}_{1}(\mathrm{Y}-\mathrm{X} \beta)=0\right. \\
& \mathrm{E}\left(\mathrm{Z}_{2}(\mathrm{Y}-\mathrm{X} \beta)=0\right.
\end{aligned}
$$

$$
\begin{aligned}
& : \\
& \mathrm{E}\left(\mathrm{Z}_{\mathrm{M}}(\mathrm{Y}-\mathrm{X} \beta)=0\right.
\end{aligned}
$$

Moment
Conditions where $\mathrm{M}=$ \#of IV's

$$
\mathbf{Z}=\left[\mathrm{Z}_{1}, \mathrm{Z}_{2}, \ldots, \mathrm{Z}_{\mathrm{M}}\right]
$$

GMM (5)

Sample Analogy

$$
\begin{aligned}
\hat{\boldsymbol{\beta}}_{G M M}=\arg \min & \left(w_{1} \mathbf{Z}_{1}^{T}(\mathbf{Y}-\mathbf{X} \boldsymbol{\beta})\right)^{2} \\
& +\left(w_{2} \mathbf{Z}_{2}^{T}(\mathbf{Y}-\mathbf{X} \boldsymbol{\beta})\right)^{2} \\
& \vdots \\
& +\left(w_{M} \mathbf{Z}_{M}^{T}(\mathbf{Y}-\mathbf{X} \boldsymbol{\beta})\right)^{2}
\end{aligned}
$$

where $\mathrm{w}_{\mathrm{m}}=$ weight for Z_{m}

GMM (6)

More general weighting

$$
\hat{\boldsymbol{\beta}}_{G M M}=\arg \min (\mathbf{Y}-\mathbf{X} \boldsymbol{\beta})^{T} \mathbf{Z} \mathbf{W} \mathbf{Z}^{T}(\mathbf{Y}-\mathbf{X} \boldsymbol{\beta})
$$

where $\mathbf{W}=\mathrm{MxM}$ symmetric PD
weight matrix for \mathbf{Z}
Note that general W allows not only own weights but also cross weights

GMM (7)

Ideal Weight matrix

$$
\mathbf{W}=\boldsymbol{\Omega}^{-\mathbf{1}}
$$

where

$$
\boldsymbol{\Omega}=\operatorname{Var}\left(Z^{T}[Y-X \beta]\right)
$$

Why? Similar reason to GLS.

Estimation

GMM (8)

Step $1 \mathrm{~W}=\mathrm{I}$ (MxM identity matrix)
Step 2 Minimize $(\mathbf{Y}-\mathbf{X} \boldsymbol{\beta})^{T} \mathbf{Z W} \mathbf{Z}^{T}(\mathbf{Y}-\mathbf{X} \boldsymbol{\beta})$
Step 3 Estimate W for next iteration
$\mathbf{W}=\hat{\Omega}^{-1}$
where $\hat{\Omega}=\frac{1}{n-K} \sum_{i=1}^{n}\left(Y_{i}-\mathbf{X}_{i} \hat{\boldsymbol{\beta}}\right)^{2} \mathbf{Z}_{i}^{T} \mathbf{Z}_{i}$
Back to Step 2 until convergence occurs

