Multiple Equations Model

Pongsa Pornchaiwiseskul Faculty of Economics Chulalongkorn University

> (c) Pongsa Pornchaiwiseskul, Faculty of Economics, Chulalongkorn University

Covered Topics (1)

Model Components

- Simultaneous Equations
 - -Endogenous variables
 - -Exogenous variables
- Cross-equation Correlation
- Cross-equation Restriction

Covered Topics (2)

Estimation Methods for MEM

- Equation-by-equation estimation
- SURE
- Three-stage LS
- GMM

Test for Exogeneity ???

(c) Pongsa Pornchaiwiseskul, Faculty of Economics, Chulalongkorn University

Simultaneous Equations Model (1)

Or SEM for short

Exogenous Variable

• its value is given

Endogenous Variable

• its value determined by the other variables (exog. or other endo.)

Simultaneous Equations Model (2)

For an *M* equations model,

there can only be *M* endogenous variables. The other must be exogenous.

Random components or error terms must be exogenous, of course.

(c) Pongsa Pornchaiwiseskul, Faculty of Economics, Chulalongkorn University

Simultaneous Equations Model (3)

Q: Who will say which variables in the model are endogenous and which are exogenous?

A: Generally, their ex/endogeneity is determined by the model structure. Easily speaking, they are assumed. However, they could be tested for exogeneity.

Structural Equations

For a non-structural equation, variables can be on any side of the equations. But for a structural equation, the variable on the lefthand side is generally endogenous. Its value will be determined by the variables on the right-hand side.

> (c) Pongsa Pornchaiwiseskul, Faculty of Economics, Chulalongkorn University

Model with *M* Independent Structural Equations (1)

 $Y_{1i} = \beta_{11} X_{1i} + \beta_{12} X_{2i} + \dots + \beta_{1K} X_{Ki} + \varepsilon_{1i} - -(1)$

 $Y_{Mi} = \beta_{M1} X_{1i} + \beta_{M2} X_{2i} + \dots + \beta_{MK} X_{Ki} + \varepsilon_{Mi} - -(M)$

Y - endogenously determined by X and $\boldsymbol{\epsilon}$

- X exogenously given
- $\boldsymbol{\epsilon}$ randomly determined with zero mean.

Model with *M* Independent Structural Equations (2)

 $\boldsymbol{\varepsilon}$ - uncorrelated between equations

 $E(\varepsilon) = 0$ $cov(\varepsilon_{mi}, \varepsilon_{nj}) = 0$ for all m, n = 1, ..., Mand all i, j==> equation-by-equation estimation (unrelated regression) is valid and BLUE

> (c) Pongsa Pornchaiwiseskul, Faculty of Economics, Chulalongkorn University

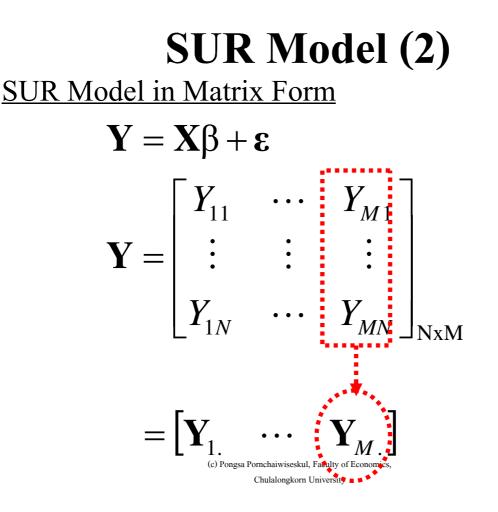
SUR Model (1)

Seeming Unrelated Regression Model

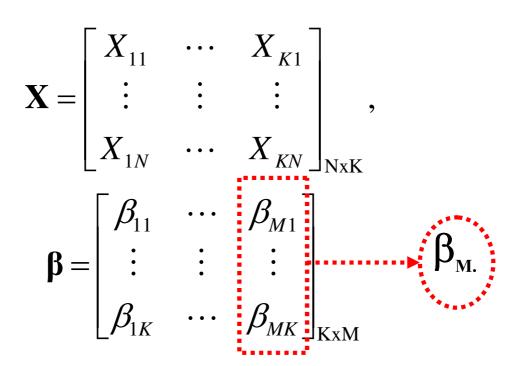
 $Y_{1i} = \beta_{11} X_{1i} + \beta_{12} X_{2i} + \dots + \beta_{1K} X_{Ki} + \varepsilon_{1i} - -(1)$:

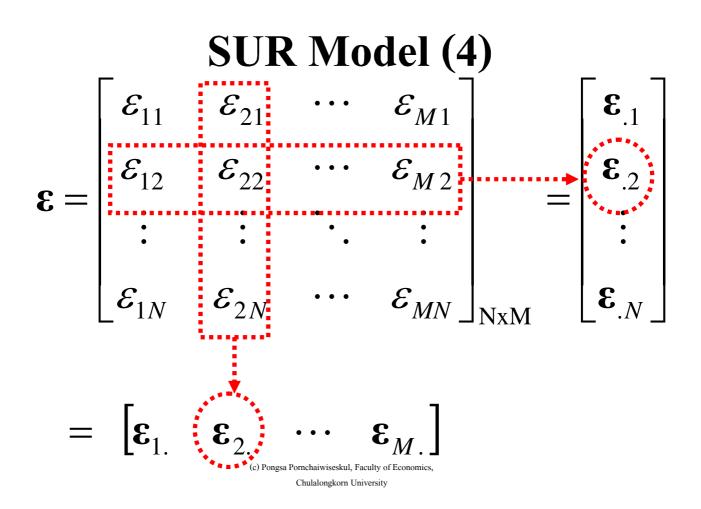
 $Y_{Mi} = \beta_{M1} X_{1i} + \beta_{M2} X_{2i} + \dots + \beta_{MK} X_{Ki} + \varepsilon_{Mi} - (M)$

$$\operatorname{cov}(\varepsilon_{mi}, \varepsilon_{ni}) \neq 0$$
 for some $m \neq n$
but $\operatorname{cov}(\varepsilon_{mi}, \varepsilon_{nj}) = 0$ for all $i \neq j$

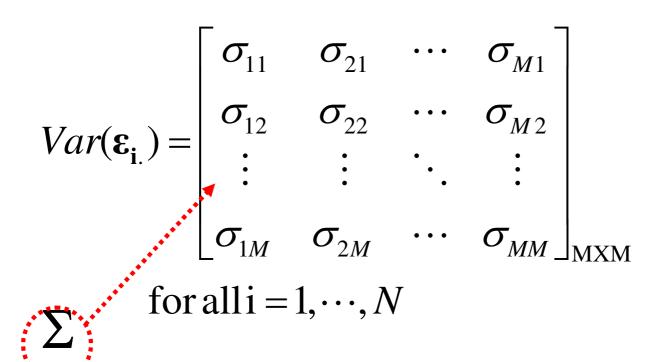


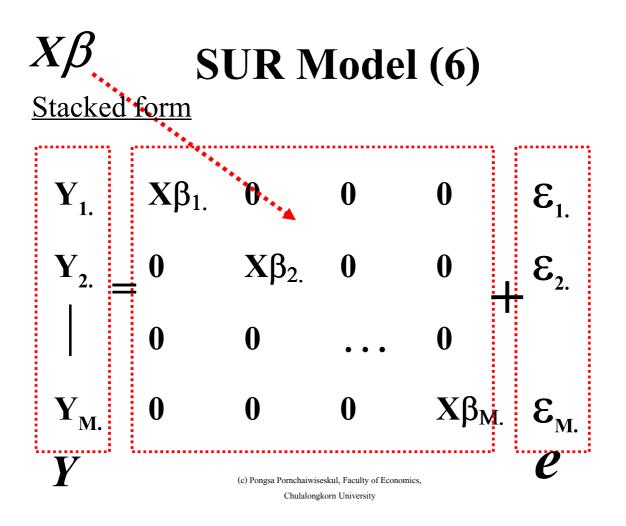
SUR Model (3)





SUR Model (5)





$$Var(\mathbf{e}) = \begin{bmatrix} \sigma_{11} & 0 & 0 & \sigma_{21} & 0 & 0 & \sigma_{M1} & \sigma_{M1} & 0 & 0 & \sigma_{M1} & \sigma_{M2} & \sigma_{M1} & \sigma_{M2} & \sigma_{M1} & \sigma_{M2} & \sigma_{M1} & \sigma_{M2} & \sigma_$$

Chulalongkorn University

SUR Model (8)

Estimation Method

Step 0 Set $\Sigma = I (MxM) \Rightarrow \Omega = I (MNxMN)$ Step 1 Run GLS on the "giant" stacked problem

$$\hat{\boldsymbol{\beta}} = [\boldsymbol{X}^{\mathrm{T}}(\hat{\boldsymbol{\Sigma}}^{-1} \otimes \boldsymbol{I}_{\mathrm{N}})\boldsymbol{X}]^{-1}\boldsymbol{X}^{\mathrm{T}}(\hat{\boldsymbol{\Sigma}}^{-1} \otimes \boldsymbol{I}_{\mathrm{N}})\boldsymbol{Y} \quad (\text{MKx1vector})$$

Step 2 Estimate Σ matrix

$$\hat{\sigma}_{mn} = \frac{\left[\mathbf{Y}_{m.} - \mathbf{X}\hat{\beta}_{m.}\right]^{\mathrm{T}}\left[\mathbf{Y}_{n.} - \mathbf{X}\hat{\beta}_{n.}\right]}{N}, \ m, n = 1, \dots, M$$

(c) Pongsa Pornchaiwiseskul, Faculty of Economics, Chulalongkorn University

SUR Model (9)

Estimation Method (cont'd) Step 3 Recalculate Ω $\Omega^{T}\Omega = [\hat{\Sigma} \otimes \mathbf{I}_{N}]^{-1}$ $= \hat{\Sigma}^{-1} \otimes \mathbf{I}_{N}$ $\Omega = \hat{\Sigma}^{-\frac{1}{2}} \otimes \mathbf{I}_{N}$ Go back to step 1 until convergence is achieved. Note that SUR is also applied to Panel Data Analysis.

SUR with Cross-equation Restriction

<u>Linear Restriction</u> $R\beta = r$

In Step 1 above, starting from the stacked form $Y=X\beta+e$, apply weight matrix Ω

$= > \Omega Y = \Omega X \beta + \Omega e$

Apply RLS to the weighted stacked form. See "Inference" module for RLS.

> (c) Pongsa Pornchaiwiseskul, Faculty of Economics, Chulalongkorn University

SEM with Cross-equation Correlation (1) $Y_{1i} \neq \gamma_{12}Y_{2i} + \dots + \gamma_{1M}Y_{Mi}$ $+ \beta_{11}X_{1i} + \beta_{12}X_{2i} + \cdots + \beta_{1K}X_{Ki} + \varepsilon_{1i}$ • $\gamma \neq 0$ $Y_{Mi} = \gamma_{M1}Y_{1i} + \dots + \gamma_{M,M-1}Y_{M-1,i}$ $+ \beta_{M1} X_{1i} + \beta_{M2} X_{2i} + \dots + \beta_{MK} X_{Ki} + \varepsilon_{Mi}$ Y - endogenously determined by X and $\boldsymbol{\varepsilon}$ X - exogenously given (c) Pongsa Pornchaiwiseskul, Faculty of Economics,

Chulalongkorn University

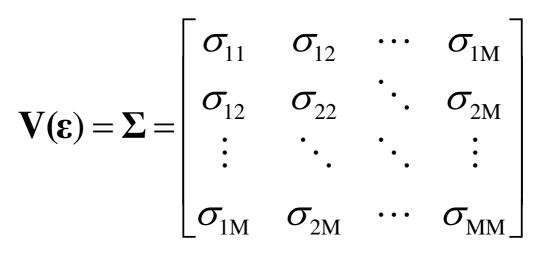
SEM with Cross-equation Correlation (2)

- $\boldsymbol{\varepsilon}$ randomly determined with zero mean.
- $\boldsymbol{\varepsilon}$ uncorrelated between equations

 $E(\varepsilon) = 0$ $cov(\varepsilon_{mi}, \varepsilon_{nj}) = 0$ for all m, n = 1, ..., Mand all i, j

> (c) Pongsa Pornchaiwiseskul, Faculty of Economics, Chulalongkorn University

SEM with Cross-equation Correlation (3)



=> equation-by-equation estimation is <u>invalid</u>. Why?

SEM with Cross-equation Correlation (4)

Assume that X is non-random or

 $\operatorname{cov}(X_{ki}, \varepsilon_{mi}) = 0$ for all m = 1, ..., Mk = 1, ..., K and all i = 1, ..., N

> (c) Pongsa Pornchaiwiseskul, Faculty of Economics Chulalongkorn University

SEM with Cross-equation Correlation (5)

 $cov(Y_{mi}, \varepsilon_{ni}) = cov(\dots + \gamma_{mn}Y_{ni} + \dots + \varepsilon_{mi}, \varepsilon_{ni})$ $= \dots + \gamma_{mn} cov(Y_{ni}, \varepsilon_{ni}) + \dots + cov(\varepsilon_{mi}, \varepsilon_{ni})$ $= \dots + \gamma_{mn} cov(\dots + \varepsilon_{ni}, \varepsilon_{ni}) + \dots + cov(\varepsilon_{mi}, \varepsilon_{ni})$ $= \dots + \gamma_{mn} var(\varepsilon_{ni}) + \dots + cov(\varepsilon_{mi}, \varepsilon_{ni})$ That is, $cov(Y_{mi}, \varepsilon_{ni}) \neq 0$, in general, for all $m \neq n$. ==> violation of CLRM assumption

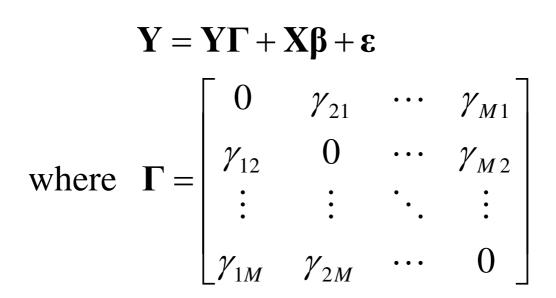
SEM with Cross-equation Correlation (6)

Valid Estimation Methods

- equation-by-equation 2SLS. Require a set of instrument variables(IV's) which include all the X's plus outside variables (if needed). Endogenous variables (Y's) cannot be IV.
- Simultaneous Approaches. Estimate all the equations simultaneously.

(c) Pongsa Pornchaiwiseskul, Faculty of Economics Chulalongkorn University

SEM in Matrix Form



Identification Problems (1)

No matter which approach is to be used (eq-by-eq or simultaneous), this question need to be answered first.

Can all the unknown parameters (γ, β) in each equation be <u>validly</u> estimated? What could be the problems?

> (c) Pongsa Pornchaiwiseskul, Faculty of Economics, Chulalongkorn University

Identification Problems (2)

The number of parameters to be estimated could exceed the number of available IV or exogenous variables.

Check Identification problems

- Exact Identification ==> proceed
- Over Identification ==> proceed
- Under Identification ==>need extra IV's

Identification Problems (3)

Identification Problem need to be checked equation by equation. That is, one equation could be exactly identified while the other is under-identified.

> (c) Pongsa Pornchaiwiseskul, Faculty of Economics, Chulalongkorn University

Identification Problems (4)

- M = Max. number of endogenous variables in any equation (it is the number of eq's)
- K = Max. number of exogenous variables in any equation
- m_m = number of γ parameters in equation *m* needed to be estimated (max. is M-1)
- k_m = number of β parameters in equation *m* needed to be estimated (max. is K)

Identification Problems (5)

Order Conditions

Equation *m* is

exactly identified if $K = m_m + k_m$ over-identified if $K > m_m + k_m$ under identified if $K < m_m + k_m$

That is, check for # of (γ, β) parameters to be estimated in each equation against K.

> (c) Pongsa Pornchaiwiseskul, Faculty of Economics, Chulalongkorn University

Identification Problems (6)

 $\frac{\text{Rank Conditions}}{\text{Define } U_m = \text{sub-matrix of } \begin{bmatrix} \mathbf{I} - \mathbf{\Gamma} \\ -\mathbf{\beta} \end{bmatrix} \text{ which}$ includes only the rows corresponding to Y and X not in equation *m*.

Equation *m* is

identified if unidentified if $Rank(U_m)=M-1$ $\operatorname{Rank}(U_m) < M-1$

Identification Problems (7)

Equation-by-equation approach order condition is enough Simultaneous approach order condition is necessary rank condition is sufficient

> (c) Pongsa Pornchaiwiseskul, Faculty of Economics, Chulalongkorn University

Identification Problems (8)

ID Problem with intra-equation parameter restriction

 $r_m =$ number of non-redundant restriction on (γ, β) parameters in equation *m*, e.g.,

$$\gamma_{m2} + \beta_{m3} = 1$$

$$\beta_{m2} = \beta_{m4}$$

Check (m_m + k_m - r_m) against K.
Cross-eq restriction =>eqxeq method fails
(c) Ponga Ponchaiwiseskul, Faculty of Economics,
Chulalongkorn University

2SLS (1)

The Same Two-Stage Least Square as in IV section. It is used eqn-by-eqn estn. Assumption

- all the X's are uncorrelated with all the ε's.
- 2) there could be extra IV's from outside model.

(c) Pongsa Pornchaiwiseskul, Faculty of Economics, Chulalongkorn University

2SLS (2)

For simplicity's sake, all IV could be assumed to be non-correlated with the error vector (all error terms in all the equation). More complex if some variables are correlated with some error terms but not with the others, e.g.,

 $Cov(X_{2i}, \varepsilon_{3i}) = 0$ but $Cov(X_{2i}, \varepsilon_{4i}) \neq 0$

2SLS (3)

Define

 $Z_{m} = matrix of IV's for equation m$ That is, $cov(Z_{m}, \mathcal{E}_{m}) = 0$ <u>Stage 1</u> For each equation m, regress Y_{m} on Z_{m} using OLS. Get fitted value of Y_{m} .

> (c) Pongsa Pornchaiwiseskul, Faculty of Economics, Chulalongkorn University

2SLS (4) $A_{m} = Z_{m} [Z_{m}^{T} Z_{m}]^{-1} Z_{m}^{T}, A_{m} = A_{m}^{T} = A_{m}^{2}$ $\hat{Y}_{m.} = A_{m} Y_{m.}$ $\underline{Stage 2} \text{ Substitute } Y_{m.} \text{ with } \hat{Y}_{m.} \text{ Then,}$ $estimate \gamma_{m.}, \beta_{m.} \text{ with OLS}$ Estimate

$$\hat{\boldsymbol{\Sigma}} = \frac{\begin{bmatrix} \mathbf{I} - \hat{\boldsymbol{\Gamma}}^{\mathrm{T}} & -\hat{\boldsymbol{\beta}}^{\mathrm{T}} \end{bmatrix} \begin{bmatrix} \mathbf{Y}^{\mathrm{T}} \\ \mathbf{X}^{\mathrm{T}} \end{bmatrix} \begin{bmatrix} \mathbf{Y} & \mathbf{X} \end{bmatrix} \begin{bmatrix} \mathbf{I} - \hat{\boldsymbol{\Gamma}} \\ -\hat{\boldsymbol{\beta}} \end{bmatrix}}{\underbrace{\mathbf{N}}_{\text{(c) Pongsa Pornchaiwiseskul, Faculty of Economics,}}}$$

Chulalongkorn University

Indirect Least Square (1)

Or **ILS** for short.

 $Y[I - \Gamma] = X\beta + \varepsilon$ $Y = X\beta[I - \Gamma]^{-1} + \varepsilon[I - \Gamma]^{-1}$ $= X\Pi + \xi \quad \leftarrow \text{Reduced Form}$ where $\Pi = \beta[I - \Gamma]^{-1}$ KxM matrix $\xi = \varepsilon[I - \Gamma]^{-1}$

> (c) Pongsa Pornchaiwiseskul, Faculty of Economics, Chulalongkorn University

Indirect Least Square (2)

Note that

- 1) $Var(\xi)$ is not diagonal but $Var(\varepsilon)$ is.
- 2) **Var**(ξ) = $[I \Gamma^T]^{-1}\Sigma [I \Gamma]^{-1}$
- 3) if Σ and Γ are known, use SUR with

$$\mathbf{\Omega} = \left[\mathbf{V}(\boldsymbol{\xi}) \otimes \mathbf{I}_N \right]^{-\frac{1}{2}}$$

Indirect Least Square (3)

<u>Step 1</u> Run equation-by-equation OLS on the reduced form

 $\Rightarrow \hat{\Pi}$ and $Var(\hat{\Pi})$

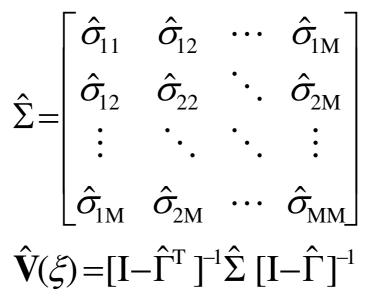
Unbiased but not the best for Π .

<u>Step 2</u> Estimate β and Γ matrices from Π estimates if they are identified.

(c) Pongsa Pornchaiwiseskul, Faculty of Economics, Chulalongkorn University

Indirect Least Square (4)

<u>Step 3</u> Calculate



(c) Pongsa Pornchaiwiseskul, Faculty of Economics, Chulalongkorn University

Indirect Least Square (5)

Step 4 Estimate the reduced form using SUR with Ω weighting matrix.

$$\hat{\boldsymbol{\Omega}} = \left[\hat{\mathbf{V}}(\boldsymbol{\xi}) \otimes \mathbf{I}_N \right]^{\frac{1}{2}}$$
$$= \hat{\mathbf{V}}(\boldsymbol{\xi})^{-\frac{1}{2}} \otimes \mathbf{I}_N$$

For Feasible ILS (FILS), go back to Step 2 until convergence

(c) Pongsa Pornchaiwiseskul, Faculty of Economics, Chulalongkorn University

Indirect Least Square (6)

Note that

1) if they are identified ILS estimators are just valid (consistent) but not the best

2) Calculation of Var($\hat{\boldsymbol{\beta}}, \hat{\boldsymbol{\Gamma}}$) from

 $Var(\hat{\Pi})$ is rather complicated as their relationship is non-linear.

Indirect Least Square (7)

- 3) FILS coincides with 2SLS with only X's as IV.
- 4) ILS may be non-unique (overidentified). No over-identification problem for 2SLS.

=> ILS is much less popular than 2SLS.

(c) Pongsa Pornchaiwiseskul, Faculty of Economics, Chulalongkorn University

ID Problem Example (1) Gujarati, p751

$$\begin{split} Y_{1t} &= \gamma_{12}Y_{2t} + \gamma_{13}Y_{3t} + \beta_{11} + \beta_{12}X_{2t} + u_{1t} \\ Y_{2t} &= \gamma_{23}Y_{3t} + \beta_{21} + \beta_{22}X_{2t} + \beta_{23}X_{3t} + u_{2t} \\ Y_{3t} &= \gamma_{31}Y_{1t} + \beta_{31} + \beta_{32}X_{2t} + \beta_{33}X_{3t} + u_{3t} \\ Y_{4t} &= \gamma_{41}Y_{1t} + \gamma_{42}Y_{2t} + \beta_{41} + \beta_{44}X_{4t} + u_{4t} \end{split}$$

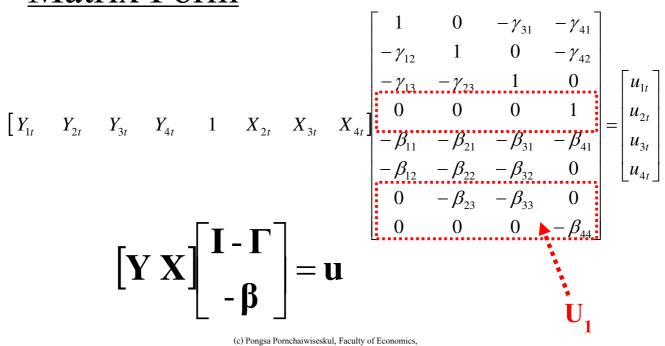
ID Problem Example (2)

Note that

- there are 16 parameters in (Γ, β) to be estimated.
- There are also 16 π 's in Π matrix
- Can (Γ, β) be identified from Π matrix? It seems OK. In fact, it is not.

(c) Pongsa Pornchaiwiseskul, Faculty of Economics, Chulalongkorn University

ID Problem Example (3) <u>Matrix Form</u>



Chulalongkorn University

ID Problem Example (4) Equation#1

$$U_{1} = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & -\beta_{23} & -\beta_{33} & 0 \\ 0 & 0 & 0 & -\beta_{44} \end{bmatrix}$$
$$m_{1} + k_{1} = 4 = K \implies exact ?$$
$$Rank(U_{1}) = 2 \implies unidentified$$

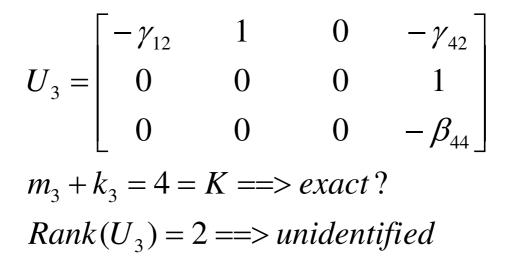
(c) Pongsa Pornchaiwiseskul, Faculty of Economics, Chulalongkorn University

ID Problem Example (5) Equation#2

$$U_{2} = \begin{bmatrix} 1 & 0 & -\gamma_{31} & -\gamma_{41} \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & -\beta_{44} \end{bmatrix}$$
$$m_{2} + k_{2} = 4 = K \implies exact?$$
$$Rank(U_{2}) = 2 \implies unidentified$$

ID Problem Example (6)

Equation#3



(c) Pongsa Pornchaiwiseskul, Faculty of Economics, Chulalongkorn University

ID Problem Example (7) Equation#4

$$U_{4} = \begin{bmatrix} -\gamma_{13} & -\gamma_{23} & 1 & 0 \\ -\beta_{12} & -\beta_{22} & -\beta_{32} & 0 \\ 0 & -\beta_{23} & -\beta_{33} & 0 \end{bmatrix}$$
$$m_{4} + k_{4} = 4 = K \implies exact?$$
$$Rank(U_{4}) = 3 \implies identified$$

ID Problem Example (8) 2SLS

All four equations will be identified with X's as IV (no IV from outside)

ILS

Only eq#4 will be identified. The other three are not completely identified. At least one parameter in each of these three equations will be unidentified according to the rank of U_m sub-matrices.

> (c) Pongsa Pornchaiwiseskul, Faculty of Economics, Chulalongkorn University

ID Problem Example (9)

If equation#2 is subject to an withinequation restriction, e.g.,

$$\begin{split} \gamma_{23} + \beta_{23} &= 1 \\ m_2 + k_2 - l_2 &= 3 < K \\ &==> over - identified ? \\ \text{Still,} \quad Rank(U_2) &= 2 ==> unidentified \end{split}$$

ID Problem Example (10)

If equation#4 is subject to an withinequation restriction, e.g.,

$$\begin{split} \gamma_{41} &= \beta_{42} \\ m_4 + k_4 - l_4 &= 3 < K \\ &==> over - identified ? \\ Rank(U_4) &= 3 ==> over - identified \end{split}$$

(c) Pongsa Pornchaiwiseskul, Faculty of Economics, Chulalongkorn University

3SLS (1)

- 3SLS or Three-Stage Least Square is the <u>simultaneous</u> extension of 2SLS to take advantage of SUR technique to improve the estimation efficiency.
- Note that in 2SLS the error terms are uncorrelated across equations. That is why equation-by-equation 2SLS is appropriate.

3SLS (2)

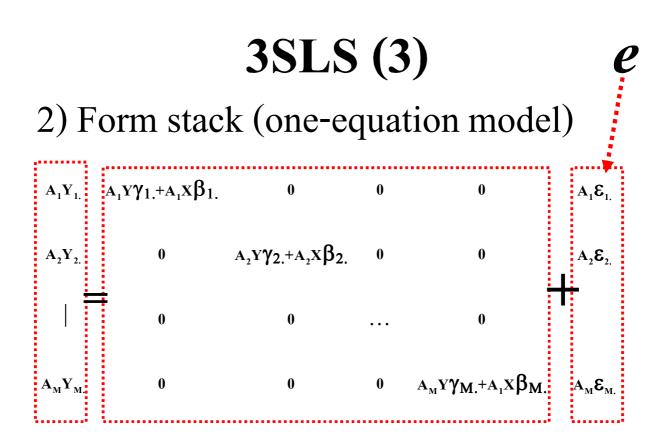
Start with the same \mathbf{Z}_{m} as in 2SLS.

Steps

0) Set $\Sigma = I$

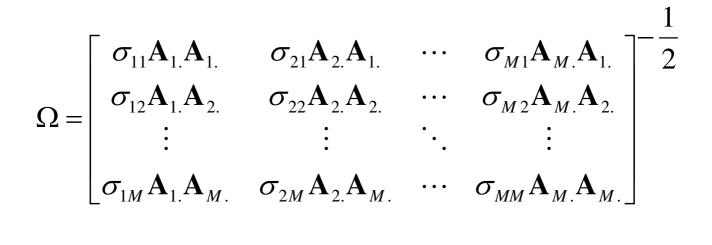
1) applying \mathbf{Z}_{m} as IV, the solution to equation *m* is equivalent to that of

 $\mathbf{A}_{m}\mathbf{Y}_{m} = \mathbf{A}_{m}\mathbf{Y}_{m}\mathbf{\Gamma}_{m} + \mathbf{A}_{m}\mathbf{X}\boldsymbol{\beta}_{m} + \mathbf{A}_{m}\boldsymbol{\varepsilon}_{m}$ Referred to IV section



3SLS (4)

3) Estimate the weighting matrix Ω



(c) Pongsa Pornchaiwiseskul, Faculty of Economics, Chulalongkorn University

3SLS (5)

3) Apply SUR to the stacked form using the estimated weight matrix.

==> valid estimates for γ , β and Σ

Note that there are restriction on Γ . Its diagonal elements are zero. Apply RLS.

Go back to 2) until convergence

GMM (1)

Generalized Methods of Moments

_extension over 3SLS by giving own weights and cross weights to each of IV to improve the estimation efficiency.

Same concept as GMM for one-equation model. Apply GMM to the stacked form which is now a single-equationed model.

> (c) Pongsa Pornchaiwiseskul, Faculty of Economics, Chulalongkorn University

GMM (2)

For each equation *m*, it is expected that

 $E(\mathbf{Z}_{m}(\mathbf{Y}_{m}[\mathbf{I}-\boldsymbol{\Gamma}_{m}]-\mathbf{X}\boldsymbol{\beta}_{m}))=\mathbf{0}$ for m=1,...,M Moment

Conditions

GMM (3)

For simplicity, assume that all the equations share the same set of IV

$$Z_{m} = Z = [Z_{1}, Z_{2}, ..., Z_{S}]$$

for all m=1,...,M

That is,

$$E(\mathbf{Z}_{s}(\mathbf{Y}_{m}[I-\Gamma_{m.}]-X\beta_{m.}))=0 \text{ for all } s=1,...,S \text{ and } m=1,...,M$$

(c) Pongsa Pornchaiwiseskul, Faculty of Economics, Chulalongkorn University

GMM (4)

Sample Analogy

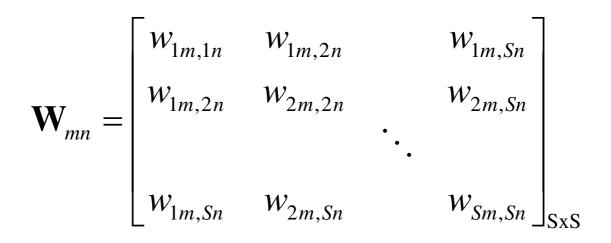
$$(\hat{\boldsymbol{\Gamma}}, \hat{\boldsymbol{\beta}})_{GMM} = \arg \min$$

$$\sum_{\substack{m=1\\n=1}}^{M} \sum_{\substack{s=1\\t=1}}^{S} \left(w_{sm,tn} \mathbf{Z}_{s}^{T} (\mathbf{Y}_{m.} - \mathbf{X} \boldsymbol{\beta}_{m.}) \mathbf{Z}_{t}^{T} (\mathbf{Y}_{n.} - \mathbf{X} \boldsymbol{\beta}_{n.}) \right)$$

where $w_{sm,tn}$ = weight for the combination

GMM (5)

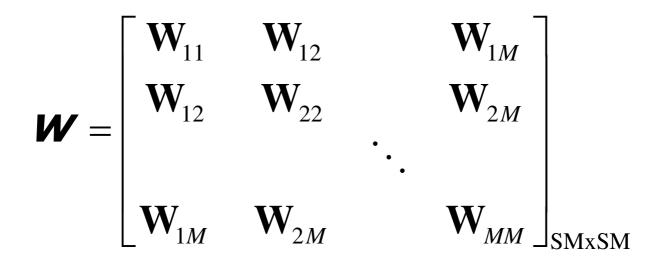
Put weights in the matrix form



(c) Pongsa Pornchaiwiseskul, Faculty of Economics. Chulalongkorn University

GMM (6)

Put weights in the matrix form



GMM (7)

Appropriate weight is

 $\hat{\boldsymbol{W}} = \left[\hat{\boldsymbol{V}} [\boldsymbol{Z}^T (\boldsymbol{Y} [\boldsymbol{I} - \hat{\boldsymbol{\Gamma}}] - \boldsymbol{X} \hat{\boldsymbol{\beta}})]^{-1} \right]$

Estimation Step 1 W=I (SMxSM identity matrix) Step 2 Minimize

 $(\mathbf{Y}[\mathbf{I} - \boldsymbol{\Gamma}] - \mathbf{X}\boldsymbol{\beta})^T \mathbf{Z} \mathbf{W} \mathbf{Z}^T (\mathbf{Y}[\mathbf{I} - \boldsymbol{\Gamma}] - \mathbf{X}\boldsymbol{\beta})$

(c) Pongsa Pornchaiwiseskul, Faculty of Economics, Chulalongkorn University

GMM (8) Step 3 Estimate W for next iteration

$$\hat{\mathbf{W}} = \boldsymbol{\Sigma}^{-1}$$
$$= \frac{1}{N} (\mathbf{Y}[\mathbf{I} - \hat{\boldsymbol{\Gamma}}] - \mathbf{X}\hat{\boldsymbol{\beta}})^T (\mathbf{Y}[\mathbf{I} - \hat{\boldsymbol{\Gamma}}] - \mathbf{X}\hat{\boldsymbol{\beta}}) \otimes \mathbf{Z}^T \mathbf{Z}$$

Back to Step 2 until convergence occurs