Multiple

 Equations Model

 Equations Model}

Pongsa Pornchaiwiseskul
Faculty of Economics
Chulalongkorn University

Covered Topics (1)

Model Components

- Simultaneous Equations
-Endogenous variables
-Exogenous variables
- Cross-equation Correlation
- Cross-equation Restriction

Covered Topics (2)

Estimation Methods for MEM

- Equation-by-equation estimation
- SURE
- Three-stage LS
- GMM

Test for Exogeneity ???

Simultaneous Equations Model (1)

Or SEM for short
Exogenous Variable

- its value is given

Endogenous Variable

- its value determined by the other variables (exog. or other endo.)

Simultaneous Equations Model (2)

For an M equations model,
there can only be M endogenous variables. The other must be exogenous.
Random components or error terms must be exogenous, of course.

Simultaneous Equations Model (3)

Q: Who will say which variables in the model are endogenous and which are exogenous?
A: Generally, their ex/endogeneity is determined by the model structure. Easily speaking, they are assumed. However, they could be tested for exogeneity.

Structural Equations

 For a non-structural equation, variables can be on any side of the equations. But for a structural equation, the variable on the lefthand side is generally endogenous. Its value will be determined by the variables on the right-hand side.(c) Pongsa Pornchaiwiseskul, Faculty of Economics,

Model with M Independent Structural Equations (1)

$$
\begin{gathered}
Y_{1 i}=\beta_{11} X_{1 i}+\beta_{12} X_{2 i}+\cdots+\beta_{1 K} X_{K i}+\varepsilon_{1 i}--(1) \\
\vdots \\
Y_{M i}=\beta_{M 1} X_{1 i}+\beta_{M 2} X_{2 i}+\cdots+\beta_{M K} X_{K i}+\varepsilon_{M i}-(\mathrm{M})
\end{gathered}
$$

Y - endogenously determined by X and $\boldsymbol{\varepsilon}$
X - exogenously given
\mathcal{E} - randomly determined with zero mean.

Model with M Independent Structural Equations (2)

\mathcal{E} - uncorrelated between equations

$$
\begin{aligned}
& \mathrm{E}(\varepsilon)=0 \\
& \operatorname{cov}\left(\varepsilon_{m i}, \varepsilon_{n j}\right)=0 \\
& \text { for all } m, n=1, \ldots, M \\
& \text { and all } i, j .
\end{aligned}
$$

$==>$ equation-by-equation estimation (unrelated regression) is valid and BLUE

SUR Model (1)

Seeming Unrelated Regression Model
$Y_{1 i}=\beta_{11} X_{1 i}+\beta_{12} X_{2 i}+\cdots+\beta_{1 K} X_{K i}+\varepsilon_{1 i}$
$Y_{M i}=\beta_{M 1} X_{1 i}+\beta_{M 2} X_{2 i}+\cdots+\beta_{M K} X_{K i}+\varepsilon_{M i}-$-(M)
$\operatorname{cov}\left(\varepsilon_{m i}, \varepsilon_{n i}\right) \neq 0$ for some $m \neq n$
but $\operatorname{cov}\left(\varepsilon_{m i}, \varepsilon_{n j}\right)=0$ for all $i \neq j$

SUR Model (2)

SUR Model in Matrix Form

$$
\begin{aligned}
\mathbf{Y} & =\mathbf{X} \beta+\boldsymbol{\varepsilon} \\
\mathbf{Y} & =\left[\begin{array}{cc:c}
Y_{11} & \ldots & Y_{M} \\
\vdots & \vdots & \vdots \\
Y_{1 N} & \cdots & Y_{M N}
\end{array}\right]_{\mathrm{NxM}} \\
& =\left[\begin{array}{lll}
\mathbf{Y}_{1 .} & \cdots & \mathbf{Y}_{M}
\end{array}\right]
\end{aligned}
$$

Chulalongkorn University \quad a - *

SUR Model (3)

SUR Model (4)

SUR Model (5)

for alli $=1, \cdots, N$

$X \beta$

 SUR Model (6)
Stacked form

SUR Model (7)

$=\boldsymbol{\Sigma} \otimes \mathbf{I}_{N} \quad$ (Kronecker Product)

SUR Model (8)

Estimation Method
Step $0 \operatorname{Set} \Sigma=\mathbf{I}(\mathrm{MxM})=>\boldsymbol{\Omega}=\mathbf{I}(\mathrm{MNxMN})$
Step 1 Run GLS on the "giant" stacked problem

$$
\hat{\beta}=\left[\mathrm{X}^{\mathrm{T}}\left(\hat{\Sigma}^{-1} \otimes \mathrm{I}_{\mathrm{N}}\right) \mathrm{X}\right]^{-1} \mathrm{X}^{\mathrm{T}}\left(\hat{\Sigma}^{-1} \otimes \mathrm{I}_{\mathrm{N}}\right) \mathrm{Y}_{(\text {MKx1vector })}
$$

Step 2 Estimate \sum matrix

$$
\hat{\sigma}_{m n}=\frac{\left[\mathbf{Y}_{m .}-\mathbf{X} \hat{\beta}_{m .}\right]^{\mathrm{T}}\left[\mathbf{Y}_{n .}-\mathbf{X} \hat{\beta}_{n .}\right]}{N}, m, n=1, \ldots, M
$$

SUR Model (9)

Estimation Method (cont'd)
Step 3 Recalculate Ω

$$
\begin{aligned}
\boldsymbol{\Omega}^{\mathbf{T} \boldsymbol{\Omega}} & =\left[\hat{\boldsymbol{\Sigma}} \otimes \mathbf{I}_{N}\right]^{-1} \\
& =\hat{\boldsymbol{\Sigma}}^{-1} \otimes \mathbf{I}_{N} \\
\boldsymbol{\Omega} & =\hat{\boldsymbol{\Sigma}}^{-\frac{1}{2}} \otimes \mathbf{I}_{N}
\end{aligned}
$$

Go back to step 1 until convergence is achieved.
Note that SUR is also applied to Panel Data Analysis.

SUR with Cross-equation Restriction
 Linear Restriction $\mathbf{R} \beta=\mathbf{r}$

In Step 1 above, starting from the stacked form $\mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+e$, apply weight matrix Ω $==>\Omega \mathbf{Y}=\Omega \mathbf{X} \boldsymbol{\beta}+\Omega e$

Apply RLS to the weighted stacked form. See "Inference" module for RLS.
(c) Pongs Pornchaiwiseskul, Faculty of Economics, Chulalongkorn University

SEM with Cross-equation Correlation (1)

$Y_{1 i}=\gamma_{12} Y_{2 i}+\cdots+\gamma_{1 M} Y_{M i}$

$+\beta_{11} X_{1 i}+\beta_{12} X_{2 i}+\cdots+\beta_{1 K} X_{K i}+\varepsilon_{1 i}$
$\vdots \quad \gamma \neq 0$
$Y_{M i}=\gamma_{M 1} Y_{1 i}+\cdots+\gamma_{M, M-1} Y_{M-1,} \quad \gamma \neq 0$

$$
+\beta_{M 1} X_{1 i}+\beta_{M 2} X_{2 i}+\cdots+\beta_{M K} X_{K i}+\varepsilon_{M i}
$$

Y - endogenously determined by X and ε
X - exogenously given

SEM with Cross-equation Correlation (2)

\mathcal{E} - randomly determined with zero mean.
\mathcal{E} - uncorrelated between equations

$$
\begin{aligned}
& \mathrm{E}(\varepsilon)=0 \\
& \operatorname{cov}\left(\varepsilon_{m i}, \varepsilon_{n j}\right)=0 \\
& \quad \text { for all } m, n=1, \ldots, M \\
& \quad \text { and all } i, j
\end{aligned}
$$

SEM with Cross-equation Correlation (3)

$$
\mathbf{V}(\boldsymbol{\varepsilon})=\boldsymbol{\Sigma}=\left[\begin{array}{cccc}
\sigma_{11} & \sigma_{12} & \cdots & \sigma_{1 \mathrm{M}} \\
\sigma_{12} & \sigma_{22} & \ddots & \sigma_{2 \mathrm{M}} \\
\vdots & \ddots & \ddots & \vdots \\
\sigma_{1 \mathrm{M}} & \sigma_{2 \mathrm{M}} & \cdots & \sigma_{\mathrm{MM}}
\end{array}\right]
$$

$=>$ equation-by-equation estimation is invalid.

 Why?
SEM with Cross-equation Correlation (4)

Assume that X is non-random or

$$
\begin{aligned}
& \operatorname{cov}\left(X_{k i}, \mathcal{E}_{m i}\right)=0 \text { for all } m=1, \ldots, M \\
& k=1, \ldots, K \text { and all } i=1, \ldots, N
\end{aligned}
$$

SEM with Cross-equation Correlation (5)

$\operatorname{cov}\left(Y_{m i}, \varepsilon_{n i}\right)=\operatorname{cov}\left(\cdots+\gamma_{m n} Y_{n i}+\cdots+\varepsilon_{m i}, \varepsilon_{n i}\right)$
$=\cdots+\gamma_{m n} \operatorname{cov}\left(Y_{n i}, \varepsilon_{n i}\right)+\cdots+\operatorname{cov}\left(\varepsilon_{m i}, \varepsilon_{n i}\right)$
$=\cdots+\gamma_{m n} \operatorname{cov}\left(\cdots \cdots+\varepsilon_{n i}, \varepsilon_{n i}\right)+\cdots+\operatorname{cov}\left(\varepsilon_{m i}, \varepsilon_{n i}\right)$
$=\cdots+\gamma_{m n} \operatorname{var}\left(\varepsilon_{n i}\right)+\cdots+\operatorname{cov}\left(\varepsilon_{m i}, \varepsilon_{n i}\right)$
That is, $\operatorname{cov}\left(Y_{m i}, \varepsilon_{n i}\right) \neq 0$, in general,
for all $m \neq n$.
$==>$ violation of CLRM assumption

SEM with Cross-equation Correlation (6)

Valid Estimation Methods

- equation-by-equation 2SLS. Require a set of instrument variables(IV's) which include all the X's plus outside variables
(if needed). Endogenous variables (Y's) cannot be IV.
- Simultaneous Approaches. Estimate all the equations simultaneously.
(c) Pongsa Pornchaiwiseskul, Faculty of Economics, Chulalongkorn University

SEM in Matrix Form

$$
\begin{aligned}
\mathbf{Y} & =\mathbf{Y} \boldsymbol{\Gamma}+\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon} \\
\text { where } & \boldsymbol{\Gamma}=\left[\begin{array}{cccc}
0 & \gamma_{21} & \cdots & \gamma_{M 1} \\
\gamma_{12} & 0 & \cdots & \gamma_{M 2} \\
\vdots & \vdots & \ddots & \vdots \\
\gamma_{1 M} & \gamma_{2 M} & \cdots & 0
\end{array}\right]
\end{aligned}
$$

Identification Problems (1)

No matter which approach is to be used (eq-by-eq or simultaneous), this question need to be answered first.

Can all the unknown parameters (γ, β) in each equation be validly estimated?
What could be the problems?

Identification Problems (2)

The number of parameters to be estimated could exceed the number of available IV or exogenous variables.

Check Identification problems

- Exact Identification $==>$ proceed
- Over Identification $==>$ proceed
- Under Identification $==>$ need extra IV's

Identification Problems (3)

Identification Problem need to be checked equation by equation. That is, one equation could be exactly identified while the other is under-identified.

Identification Problems (4)

$\mathrm{M}=\mathrm{Max}$. number of endogenous variables in any equation (it is the number of eq's)
$\mathrm{K}=$ Max. number of exogenous variables in any equation
$\mathrm{m}_{m}=$ number of γ parameters in equation m needed to be estimated (max. is $\mathrm{M}-1$)
$\mathrm{k}_{m}=$ number of $\boldsymbol{\beta}$ parameters in equation m needed to be estimated (max. is K)

Identification Problems (5)

Order Conditions

Equation m is
exactly identified if $\quad \mathrm{K}=\mathrm{m}_{m}+\mathrm{k}_{m}$
over-identified if $\quad \mathrm{K}>\mathrm{m}_{m}+\mathrm{k}_{m}$ under identified if $\quad \mathrm{K}<\mathrm{m}_{m}+\mathrm{k}_{m}$
That is, check for \# of (γ, β) parameters to be estimated in each equation against K .

Identification Problems (6)

Rank Conditions

Define $\mathrm{U}_{m}=$ sub-matrix of $[-\boldsymbol{\beta}]$ which includes only the rows corresponding to Y and X not in equation m.
Equation m is
identified if
$\operatorname{Rank}\left(\mathrm{U}_{m}\right)=\mathrm{M}-1$
unidentified if
$\operatorname{Rank}\left(\mathrm{U}_{m}\right)<\mathrm{M}-1$

Identification Problems (7)

Equation-by-equation approach

 order condition is enough Simultaneous approach order condition is necessary rank condition is sufficient
Identification Problems (8)

ID Problem with intra-equation parameter restriction
$\mathrm{r}_{m}=$ number of non-redundant restriction on
${ }^{m}(\gamma, \boldsymbol{\beta})$ parameters in equation m, e.g.,

$$
\begin{aligned}
& \gamma_{m 2}+\beta_{m 3}=1 \\
& \beta_{m 2}=\beta_{m 4}
\end{aligned}
$$

Check $\left(\mathrm{m}_{m}+\mathrm{k}_{m}-\mathrm{r}_{m}\right)$ against K.
Cross-eq restriction $=>$ eqxeq method fails

2SLS (1)

The Same Two-Stage Least Square as in

 IV section. It is used eqn-by-eqn estn.
Assumption

1) all the X 's are uncorrelated with all the ε 's.
2) there could be extra IV's from outside model.

2SLS (2)

For simplicity's sake, all IV could be assumed to be non-correlated with the error vector (all error terms in all the equation). More complex if some variables are correlated with some error terms but not with the others, e.g.,

$$
\operatorname{Cov}\left(X_{2 i}, \varepsilon_{3 i}\right)=0 \text { but } \operatorname{Cov}\left(X_{2 i}, \varepsilon_{4 i}\right) \neq 0
$$

2SLS (3)

Define

$$
\mathbf{Z}_{\mathrm{m}}=\text { matrix of IV's for equation } m
$$

That is, $\operatorname{cov}\left(\mathbf{Z}_{\mathrm{m}}, \boldsymbol{\varepsilon}_{\mathrm{m}}\right)=0$
Stage 1 For each equation m, regress \mathbf{Y} on \mathbf{Z}_{m} using OLS. Get fitted value of ${ }^{m}$ Y_{m}.

2SLS (4)

$$
\begin{aligned}
& \mathbf{A}_{m}=\mathbf{Z}_{m}\left[\mathbf{Z}_{m}^{\mathrm{T}} \mathbf{Z}_{m}\right]^{-1} \mathbf{Z}_{m}^{\mathrm{T}}, \mathbf{A}_{m}=\mathbf{A}_{m}^{\mathrm{T}}=\mathbf{A}_{m}^{2} \\
& \hat{\mathbf{Y}}_{m .}=\mathbf{A}_{m} \mathbf{Y}_{m .}
\end{aligned}
$$

Stage 2 Substitute Y_{m} with $\hat{\mathbf{Y}}_{m}$. Then, estimate γ_{m}, β_{m}, with OLS

Estimate

Indirect Least Square (1)

Or ILS for short.

$$
\text { where } \Pi=\beta[\mathbf{I}-\boldsymbol{\Gamma}]^{-1} \quad \text { KxM matrix }
$$

$$
\xi=\boldsymbol{\varepsilon}[\mathbf{I}-\boldsymbol{\Gamma}]^{-1}
$$

Indirect Least Square (2)

Note that

1) $\operatorname{Var}(\xi)$ is not diagonal but $\operatorname{Var}(\varepsilon)$ is.
2) $\operatorname{Var}(\xi)=\left[I-\Gamma^{T}\right]^{-1} \Sigma[I-\Gamma]^{-1}$
3) if Σ and Γ are known, use SUR with

$$
\boldsymbol{\Omega}=\left[\mathbf{V}(\boldsymbol{\xi}) \otimes \mathbf{I}_{N}\right]^{-\frac{1}{2}}
$$

$$
\begin{aligned}
& \mathbf{Y}[\mathbf{I}-\boldsymbol{\Gamma}]=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon} \\
& \mathbf{Y}=\mathbf{X} \boldsymbol{\beta}[\mathbf{I}-\boldsymbol{\Gamma}]^{-1}+\boldsymbol{\varepsilon}[\mathbf{I}-\boldsymbol{\Gamma}]^{-1} \\
& =\mathbf{X} \Pi+\xi 4 \cdots \text { Reduced Form }
\end{aligned}
$$

Indirect Least Square (3)

Step 1 Run equation-by-equation OLS on the reduced form

$$
\Rightarrow \hat{\Pi} \text { and } \operatorname{Var}(\hat{\Pi})
$$

Unbiased but not the best for Π.
Step 2 Estimate β and Γ matrices from Π estimates if they are identified.
(c) Pongsa Pornchaiwiseskul, Faculty of Economics, Chulalongkorn University

Indirect Least Square (4)

Step 3 Calculate

$$
\begin{aligned}
& \hat{\Sigma}=\left[\begin{array}{cccc}
\hat{\sigma}_{11} & \hat{\sigma}_{12} & \cdots & \hat{\sigma}_{1 \mathrm{M}} \\
\hat{\sigma}_{12} & \hat{\sigma}_{22} & \ddots & \hat{\sigma}_{2 \mathrm{M}} \\
\vdots & \ddots & \ddots & \vdots \\
\hat{\sigma}_{\mathrm{IM}} & \hat{\sigma}_{2 \mathrm{M}} & \cdots & \hat{\sigma}_{\mathrm{MM}}
\end{array}\right] \\
& \hat{\mathbf{V}}(\xi)=\left[\mathrm{I}-\hat{\Gamma}^{\mathrm{T}}\right]^{-1} \hat{\Sigma}[\mathrm{I}-\hat{\Gamma}]^{-1}
\end{aligned}
$$

Indirect Least Square (5)

Step 4 Estimate the reduced form using SUR with Ω weighting matrix.

$$
\begin{aligned}
\hat{\boldsymbol{\Omega}} & =\left[\hat{\mathbf{V}}(\boldsymbol{\xi}) \otimes \mathbf{I}_{N}\right]^{-\frac{1}{2}} \\
& =\hat{\mathbf{V}}(\boldsymbol{\xi})^{-\frac{1}{2}} \otimes \mathbf{I}_{N}
\end{aligned}
$$

For Feasible ILS (FILS), go back to Step 2 until convergence

Indirect Least Square (6)

Note that

1) if they are identified ILS estimators are just valid (consistent) but not the best 2) Calculation of $\operatorname{Var}(\hat{\boldsymbol{\beta}}, \hat{\Gamma})$ from
$\operatorname{Var}(\hat{\Pi})$ is rather complicated as their relationship is non-linear.

Indirect Least Square (7)

3) FILS coincides with 2SLS with only X's as IV.
4) ILS may be non-unique (overidentified). No over-identification problem for 2SLS.

=> ILS is much less popular than 2SLS.

ID Problem Example (1)

Gujarati, p751

$$
\begin{aligned}
& Y_{1 t}=\gamma_{12} Y_{2 t}+\gamma_{13} Y_{3 t}+\beta_{11}+\beta_{12} X_{2 t}+u_{1 t} \\
& Y_{2 t}=\gamma_{23} Y_{3 t}+\beta_{21}+\beta_{22} X_{2 t}+\beta_{23} X_{3 t}+u_{2 t} \\
& Y_{3 t}=\gamma_{31} Y_{1 t}+\beta_{31}+\beta_{32} X_{2 t}+\beta_{33} X_{3 t}+u_{3 t} \\
& Y_{4 t}=\gamma_{41} Y_{1 t}+\gamma_{42} Y_{2 t}+\beta_{41}+\beta_{44} X_{4 t}+u_{4 t}
\end{aligned}
$$

ID Problem Example (2)

Note that

- there are 16 parameters in (Γ, β) to be estimated.
- There are also 16π 's in Π matrix
- Can (Γ, β) be identified from Π matrix? It seems OK. In fact, it is not.

ID Problem Example (3)

Matrix Form

ID Problem Example (4)

Equation\#1

$$
\begin{aligned}
& U_{1}=\left[\begin{array}{cccc}
0 & 0 & 0 & 1 \\
0 & -\beta_{23} & -\beta_{33} & 0 \\
0 & 0 & 0 & -\beta_{44}
\end{array}\right] \\
& m_{1}+k_{1}=4=K=\Rightarrow \text { exact } ? \\
& \operatorname{Rank}\left(U_{1}\right)=2=\Rightarrow \text { unidentified }
\end{aligned}
$$

ID Problem Example (5)

Equation\#2

$$
\begin{aligned}
& U_{2}=\left[\begin{array}{cccc}
1 & 0 & -\gamma_{31} & -\gamma_{41} \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & -\beta_{44}
\end{array}\right] \\
& m_{2}+k_{2}=4=K=\Rightarrow \text { exact } ? \\
& \operatorname{Rank}\left(U_{2}\right)=2=\Rightarrow \text { unidentified }
\end{aligned}
$$

ID Problem Example (6)

Equation\#3

$$
\begin{aligned}
& U_{3}=\left[\begin{array}{cccc}
-\gamma_{12} & 1 & 0 & -\gamma_{42} \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & -\beta_{44}
\end{array}\right] \\
& m_{3}+k_{3}=4=K==>\text { exact } ? \\
& \operatorname{Rank}\left(U_{3}\right)=2==>\text { unidentified }
\end{aligned}
$$

ID Problem Example (7)

Equation\#4

$$
U_{4}=\left[\begin{array}{cccc}
-\gamma_{13} & -\gamma_{23} & 1 & 0 \\
-\beta_{12} & -\beta_{22} & -\beta_{32} & 0 \\
0 & -\beta_{23} & -\beta_{33} & 0
\end{array}\right]
$$

$m_{4}+k_{4}=4=K=>$ exact ?
$\operatorname{Rank}\left(U_{4}\right)=3=>$ identified

ID Problem Example (8)

2SLS

All four equations will be identified with X's as IV (no IV from outside)

ILS

Only eq\#4 will be identified. The other three are not completely identified. At least one parameter in each of these three equations will be unidentified according to the rank of U_{m} sub-matrices.

ID Problem Example (9)

If equation\#2 is subject to an withinequation restriction, e.g.,

$$
\begin{gathered}
\gamma_{23}+\beta_{23}=1 \\
m_{2}+k_{2}-l_{2}=3<K \\
==>\text { over }- \text { identified } ?
\end{gathered}
$$

Still, $\operatorname{Rank}\left(U_{2}\right)=2==>$ unidentified

ID Problem Example (10)

If equation\#4 is subject to an withinequation restriction, e.g.,

$$
\begin{gathered}
\gamma_{41}=\beta_{42} \\
m_{4}+k_{4}-l_{4}=3<K \\
==>\text { over }- \text { identified } ? \\
\text { Rank }\left(U_{4}\right)=3==>\text { over }- \text { identified }
\end{gathered}
$$

3SLS (1)

3SLS or Three-Stage Least Square is the simultaneous extension of 2SLS to take advantage of SUR technique to improve the estimation efficiency.
Note that in 2SLS the error terms are uncorrelated across equations. That is why equation-by-equation 2SLS is appropriate.

3SLS (2)

Start with the same \mathbf{Z}_{m} as in 2 SLS.

Steps

0) Set $\sum=I$
1) applying \mathbf{Z}_{m} as IV, the solution to equation m is equivalent to that of
$\mathbf{A}_{m} \mathbf{Y}_{m}=\mathbf{A}_{m} \mathbf{Y}_{m} \boldsymbol{\Gamma}_{m .}+\mathbf{A}_{m} \mathbf{X} \boldsymbol{\beta}_{m .}+\mathbf{A}_{m} \boldsymbol{\varepsilon}_{m}$
Referred to IV section

3SLS (3)

2) Form stack (one-equation model)

3SLS (4)

3) Estimate the weighting matrix Ω

$$
\Omega=\left[\begin{array}{cccc}
\sigma_{11} \mathbf{A}_{1 .} \mathbf{A}_{1 .} & \sigma_{21} \mathbf{A}_{2 .} \mathbf{A}_{1 .} & \cdots & \sigma_{M 1} \mathbf{A}_{M .} \mathbf{A}_{1 .} \\
\sigma_{12} \mathbf{A}_{1 .} \mathbf{A}_{2 .} & \sigma_{22} \mathbf{A}_{2 .} \mathbf{A}_{2 .} & \cdots & \sigma_{M 2} \mathbf{A}_{M .} \mathbf{A}_{2 .} \\
\vdots & \vdots & \ddots & \vdots \\
\sigma_{1 M} \mathbf{A}_{1 .} \mathbf{A}_{M .} & \sigma_{2 M} \mathbf{A}_{2 .} \mathbf{A}_{M .} & \cdots & \sigma_{M M} \mathbf{A}_{M .} \mathbf{A}_{M .}
\end{array}\right]^{-\frac{1}{2}}
$$

3SLS (5)

3) Apply SUR to the stacked form using the estimated weight matrix.
$==>$ valid estimates for γ, β and Σ
Note that there are restriction on Γ. Its diagonal elements are zero. Apply RLS.

Go back to 2) until convergence

GMM (1)

Generalized Methods of Moments

_extension over 3SLS by giving own weights and cross weights to each of IV to improve the estimation efficiency.

Same concept as GMM for one-equation model. Apply GMM to the stacked form which is now a single-equationed model.

GMM (2)

For each equation m, it is expected that
$\mathrm{E}\left(\mathbf{Z}_{\mathrm{m}}\left(\mathbf{Y}_{\mathrm{m} .}\left[\mathrm{I}-\Gamma_{\mathrm{m}}\right]-\mathrm{X} \boldsymbol{\beta}_{\mathrm{m}}\right)\right)=\mathbf{0}$ for $\mathrm{m}=1, \ldots, \mathrm{M}$

GMM (3)

For simplicity, assume that all the equations share the same set of IV

$$
\begin{aligned}
\mathbf{Z}_{\mathrm{m}}=\mathbf{Z}= & {\left[\mathrm{Z}_{1}, \mathrm{Z}_{2}, \ldots, \mathrm{Z}_{\mathrm{S}}\right] } \\
& \text { for all } \mathrm{m}=1, \ldots, \mathrm{M}
\end{aligned}
$$

That is,

$$
\begin{aligned}
& \mathrm{E}\left(\mathbf{Z}_{\mathrm{s}}\left(\mathbf{Y}_{\mathrm{m}}\left[I-\Gamma_{\mathrm{m}}\right]-\mathrm{X} \beta_{\mathrm{m}}\right)\right)=0 \text { for all } \\
& \mathrm{s}=1, \ldots, \mathrm{~S} \text { and } \underset{\mathrm{m}}{\mathrm{~m}}=1, \ldots, \mathrm{M}
\end{aligned}
$$

GMM (4)

Sample Analogy

$(\hat{\Gamma}, \hat{\boldsymbol{\beta}})_{G M M}=\arg \min$

$$
\sum_{\substack{m=1 \\ n=1 \\=1 \\ s=1}}^{S}\left(w_{s m, n} \mathbf{Z}_{s}^{T}\left(\mathbf{Y}_{m .}-\mathbf{X} \boldsymbol{\beta}_{m,}\right) \mathbf{Z}_{t}^{T}\left(\mathbf{Y}_{n,}-\mathbf{X} \boldsymbol{\beta}_{n,}\right)\right)
$$

where $\mathrm{w}_{\mathrm{sm}, \mathrm{tn}}=$ weight for the combination

GMM (5)

Put weights in the matrix form

$$
\mathbf{W}_{m n}=\left[\begin{array}{llll}
w_{1 m, 1 n} & w_{1 m, 2 n} & & w_{1 m, S n} \\
w_{1 m, 2 n} & w_{2 m, 2 n} & & w_{2 m, S n} \\
& & \ddots & \\
w_{1 m, S n} & w_{2 m, S n} & & w_{S m, S n}
\end{array}\right]_{\mathrm{SXS}}
$$

GMM (6)

Put weights in the matrix form

GMM (7)

Appropriate weight is

$$
\hat{\boldsymbol{W}}=\left[\hat{\mathbf{V}}\left[\mathbf{Z}^{T}(\mathbf{Y}[\mathbf{I}-\hat{\boldsymbol{\Gamma}}]-\mathbf{X} \hat{\boldsymbol{\beta}})\right]\right]^{-1}
$$

Estimation
Step $1 \mathrm{~W}=\mathrm{I}$ (SMxSM identity matrix)
Step 2 Minimize

$$
(\mathbf{Y}[\mathbf{I}-\boldsymbol{\Gamma}]-\mathbf{X} \boldsymbol{\beta})^{T} \mathbf{Z} \mathbf{W} \mathbf{Z}^{T}(\mathbf{Y}[\mathbf{I}-\boldsymbol{\Gamma}]-\mathbf{X} \boldsymbol{\beta})
$$

GMM (8)

Step 3 Estimate W for next iteration

$$
\begin{aligned}
\hat{\mathbf{W}} & =\boldsymbol{\Sigma}^{-1} \\
& =\frac{1}{N}(\mathbf{Y}[\mathbf{I}-\hat{\boldsymbol{\Gamma}}]-\mathbf{X} \hat{\boldsymbol{\beta}})^{T}(\mathbf{Y}[\mathbf{I}-\hat{\boldsymbol{\Gamma}}]-\mathbf{X} \hat{\boldsymbol{\beta}}) \otimes \mathbf{Z}^{T} \mathbf{Z}
\end{aligned}
$$

Back to Step 2 until convergence occurs

