Choice Models

(c) Pongsa Pornchaiwiseskul, Faculty of Economics, Chulalongkorn University

Covered Topics

- Binary Choice
 - -LPM
 - -logit
 - -logistic regresion
 - -probit
- Multiple Choice –Multinomial Logit

Binary Choice

- Yes or No
- Buy or Not Buy
- Join or Not Join
- Own or Not Own
- Switch or Stay

(c) Pongsa Pornchaiwiseskul, Faculty of Economics, Chulalongkorn University

3

4

Multiple Choice

- Yes, No, Abstain
- Buy, Sell or No Action
- Buy Brand A, B, C or None
- Join Plan X, Y or Z

Mutual Exclusiveness

Note that all the choices must be mutually exclusive and exhaustive. One and only one choice or event will occur.

> (c) Pongsa Pornchaiwiseskul, Faculty of Economics, Chulalongkorn University

5

6

Choice Model (1)

Question: What determines the choice selection?

Model to determine the probability of an event under a given condition (value of independent variables)

 $Pr(choice #j) = F_{i}(X_{1}, X_{2}, ..., X_{K})$

Chulalongkorn University

where X's are determinants for the probability. (c) Pongsa Pornchaiwiseskul, Faculty of Economics,

Choice Model (2)

Note that

1) $\sum_{j} \Pr(\text{choice} \# j) = 1$ 2) function $F_j()$ must return a value between 0 and 1

> (c) Pongsa Pornchaiwiseskul, Faculty of Economics, Chulalongkorn University

7

8

Quantification of Binary Choices

Example

JOIN=1 if the observation will join the government-run health insurance program = 0, otherwise

Quantification of Multiple Choices

- JA=1 if the observation will join Plan A = 0, otherwise JB=1 if the observation will join Plan B
 - = 0, otherwise
- JC=1 if the observation will join Plan C
 - = 0, otherwise
- Note that JA+JB+JC=1 always.

(c) Pongsa Pornchaiwiseskul, Faculty of Economics, Chulalongkorn University

Binary Choice Model

General Structure

$$Pr(JOIN = 1) = F(X_1, X_2, ..., X_K)$$

 $Pr(JOIN = 0) = 1 - F(X_1, X_2, ..., X_K)$

Note that

 $0 \le F(X_1, X_2, ..., X_K) \le 1$

(c) Pongsa Pornchaiwiseskul, Faculty of Economics, Chulalongkorn University

Linear Probability Model (1)

Define $P = \Pr(JOIN = 1)$

Assumption of LPM

Linearity of F(.)

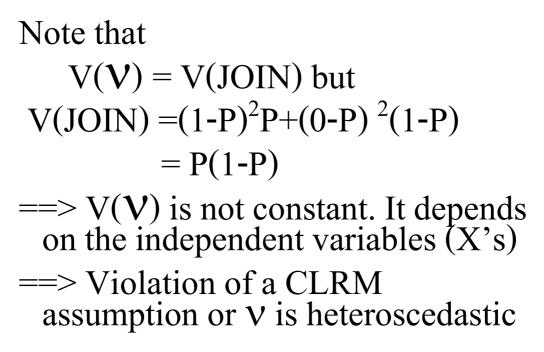
 $P = \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_K X_K$

Note that there is no error term

(c) Pongsa Pornchaiwiseskul, Faculty of Economics, Chulalongkorn University 11

Linear Probability Model (2) Formulation of LPM E(JOIN)=(1)P+(0)(1-P)=P => JOIN=P+vwhere v is an error term. E(v)=0 $JOIN = \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_K X_K + v \quad \dots \quad (1)$ => OLS is valid but not the best. Why?

Linear Probability Model (3)



(c) Pongsa Pornchaiwiseskul, Faculty of Economics, Chulalongkorn University

Linear Probability Model (4)

Define
$$w = \sqrt{\frac{1}{P(1-P)}}$$

$$JOIN^{*} = \beta_{1}X_{1}^{*} + \beta_{2}X_{2}^{*} + \dots + \beta_{K}X_{K}^{*} + \nu^{*} \quad \dots \dots (2)$$

where $JOIN^* = wJOIN$

$$X_{k}^{*} = wX_{k} \text{ for } k = 1, \dots, K$$
$$v^{*} = wv$$

(c) Pongsa Pornchaiwiseskul, Faculty of Economics, Chulalongkorn University

Linear Probability Model (5)

Note that

$$V(v^*) = w^2 V(v)$$
$$= \frac{1}{P(1-P)} P(1-P)$$
$$= 1$$

==> OLS is BLUE for Model (2)

(c) Pongsa Pornchaiwiseskul, Faculty of Economics, Chulalongkorn University

Linear Probability Model (6)

Estimation of LPM

Step 1 run OLS for unweighted model (1)

$$=> \widehat{JOIN} = X \widehat{\beta}$$

Note that \widehat{JOIN} is the estimate for P

Linear Probability Model (7)

Step 2 compute the weight

$$w = \sqrt{\frac{1}{\widehat{JOIN}(1 - \widehat{JOIN})}}$$

Step 3 compute $JOIN^*, X_1^*, X_2^*, ..., X_K^*$

Step 4 estimate the weighted model (2) using OLS

(c) Pongsa Pornchaiwiseskul, Faculty of Economics, Chulalongkorn University

Linear Probability Model (8) Step 5 re-compute \widehat{JOIN} using the new set of $\widehat{\beta}$.

Note that LPM does not assure that

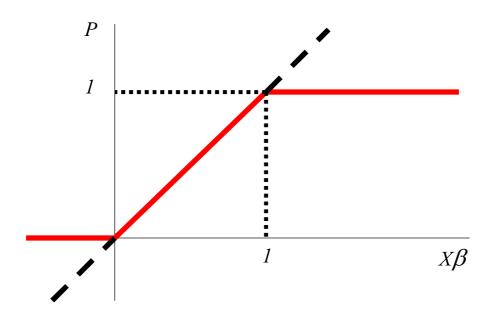
 $0 \le F(X_1, X_2, ..., X_K) \le 1$ or

Linear Probability Model (9)

Correction If $X\beta < 0$, set $\widehat{JOIN} = 0$ If $X\beta > 1$, set $\widehat{JOIN} = 1$

(c) Pongsa Pornchaiwiseskul, Faculty of Economics, Chulalongkorn University 19

Linear Probability Model (10)



(c) Pongsa Pornchaiwiseskul, Faculty of Economics, Chulalongkorn University

Linear Probability Model (11)

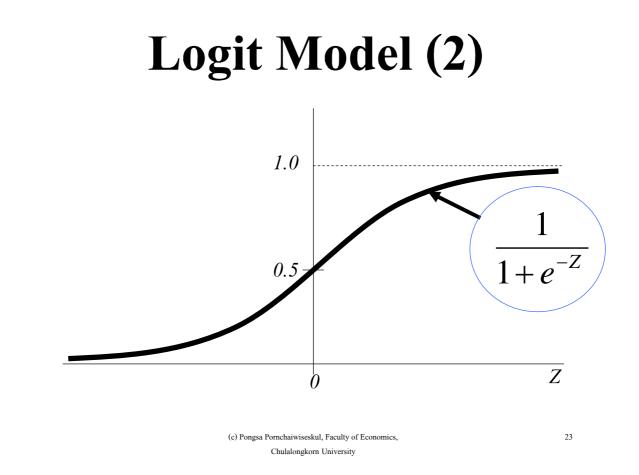
- Less expensive in computer time. No non-linear equations
- $\frac{\partial P}{\partial X_k} = \beta_k$ is the effect of X on the probability. In general, the explanatory variables should be unitless or are expressed in percentage

(c) Pongsa Pornchaiwiseskul, Faculty of Economics, Chulalongkorn University

Logit Model (1)

Assumption of Logit

F() is a logistic function No error term $P = \frac{1}{1 + e^{-Z}}$ $Z = \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_K X_K$ Note that $0 \le F(Z) \le 1$ always.



Logit Model (3)
Note that OLS does not apply
ML Estimation of Logit model

$$\max_{\beta} L = \prod_{i=1}^{n} (P_i)^{Y_i} (1 - P_i)^{(1 - Y_i)}$$
or
$$\max_{\beta} \ln L = \sum_{i=1}^{n} [Y_i \ln(P_i) + (1 - Y_i) \ln(1 - P_i)]$$
Note that Y=JOIN

(c) Pongsa Pornchaiwiseskul, Faculty of Economics, Chulalongkorn University

Logit Model (4)

Note that $1 - P = \frac{1}{1 + e^Z}$ First-order conditions

For *k*=1,...,*K*

$$\frac{\partial \ln L}{\partial \beta_k} = \sum_{i=1}^n \left[X_{ki} Y_i \frac{e^{-Z_i}}{1 + e^{-Z_i}} \right] \\ - \sum_{i=1}^n \left[X_{ki} (1 - Y_i) \frac{e^{Z_i}}{1 + e^{Z_i}} \right] = 0$$
(c) Pongsa Pornchaiwiseskul, Faculty of Economics, Chulalongkorn University

Logit Model (5)

Solving FOC for ML estimates.

Second-order Conditions

$$\frac{\partial^2 \ln L}{\partial \beta_j \partial \beta_k} = -\sum_{i=1}^n [X_{ji} X_{ki} Y_i \frac{e^{Z_i}}{(1+e^{Z_i})^2}] -\sum_{i=1}^n [X_{ji} X_{ki} (1-Y_i) \frac{e^{-Z_i}}{(1+e^{-Z_i})^2}]$$

yields Variance-covariance matrix of $\hat{\boldsymbol{\beta}}$

Logit Model (6)

Variance-Covariance Matrix for $\hat{\beta}$

$$V(\hat{\beta}) = \left[-\frac{\partial^2 \ln L}{\partial \beta_j \partial \beta_k}\right]^{-1}$$

Note that it is not the estimated VC matrix. Do Z-test or Chi-square test instead of ttest or F-test on parameters

> (c) Pongsa Pornchaiwiseskul, Faculty of Economics, Chulalongkorn University

Logit Model (7)

Interpretation

$$\frac{\partial P}{\partial X_k} = \frac{e^{-Z_i}}{\left(1 + e^{-Z_i}\right)^2} \beta_k = \{+\} \beta_k$$

sign of $\beta_k ==>$ direction of the effect of X_k on the probability to JOIN.

Logit Model (8)

No R^2 for a logit model since there is no error term.

Define $pseudo - R^2 = \frac{\# \text{ correct prediction}}{\text{ sample size (n)}}$ It is a measure for goodness-of-fit. $\widehat{\text{JOIN}} > 0.5 ==> \text{ predict that JOIN} = 1$ $\widehat{\text{JOIN}} < 0.5 ==> \text{ predict that JOIN} = 0$

> (c) Pongsa Pornchaiwiseskul, Faculty of Economics, Chulalongkorn University

Logistic Regression (1)

Assumption of Logistic Regression

F(.) is a logistic function but the observation(experiment) for each given set of independent variables(X) will be repeated several times.Only the proportion of JOIN=1 can be observed.

Logistic Regression (2)

From Logit Model

$$\ln\left(\frac{P}{1-P}\right) = \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_K X_K$$

Note that P is the expected proportion of population **JOIN**ing given X's

> (c) Pongsa Pornchaiwiseskul, Faculty of Economics, Chulalongkorn University

Logistic Regression (3)

Define

 R_i =observed proportion of observation with the same value of X_i that **JOIN**.

Derived Model

$$\ln\left(\frac{R_i}{1-R_i}\right) = \beta_1 X_{1i} + \beta_2 X_{2i} + \dots + \beta_K X_{Ki} + \nu_i$$
$$V(\nu_i) = \frac{1}{N_i R_i (1-R_i)} \quad \text{Why?}$$

(c) Pongsa Pornchaiwiseskul, Faculty of Economics, Chulalongkorn University

Logistic Regression (4)

Define $w = \sqrt{N_i R_i (1 - R_i)}$

Estimation

 $R_{i}^{*} = \beta_{1} X_{1i}^{*} + \beta_{2} X_{2i}^{*} + \beta_{K} X_{Ki}^{*} + v_{i}^{*}$ where $R_{i}^{*} = w_{i} \ln \left(\frac{R_{i}}{1 - R_{i}}\right)$ $X_{ki}^{*} = w_{i} X_{ki} \text{ for } k = 1, ..., K$ $v_{i}^{*} = w_{i} v_{i}$

(c) Pongsa Pornchaiwiseskul, Faculty of Economics, Chulalongkorn University

33

Logistic Regression (5)

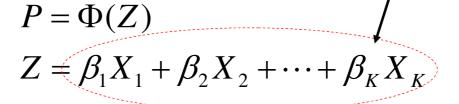
=> OLS is BLUE

<u>Interpretation of the parameters</u> same as those for logit model as the underlying function is also logistic

Probit Model (1)

Assumption of Probit

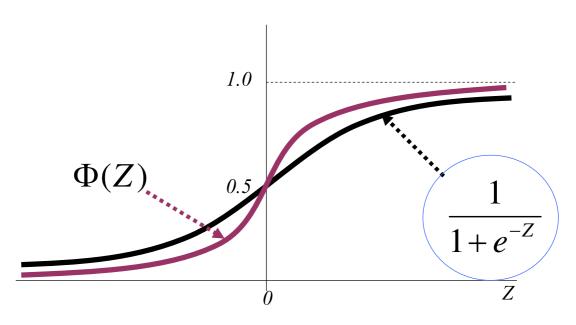
F() is a cumulative distribution function of a standard normal.



Note that $0 \le \Phi(Z) \le 1$ always.

(c) Pongsa Pornchaiwiseskul, Faculty of Economics, Chulalongkorn University

Probit Model (2)



(c) Pongsa Pornchaiwiseskul, Faculty of Economics, Chulalongkorn University

Multinomial Logit Model (1)

Assumption of Multinomial Logit

Define
$$PA_i = Pr(JA_i=1)$$

 $PB_i = Pr(JB_i=1)$
 $PC_i = Pr(JC_i=1)$

Choose the choice of plan C as the reference.

(c) Pongsa Pornchaiwiseskul, Faculty of Economics, Chulalongkorn University

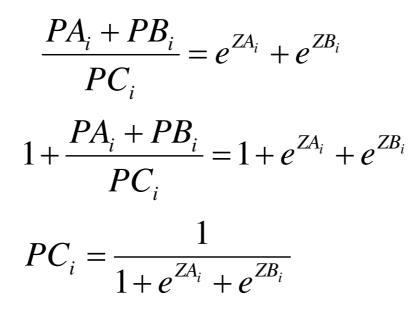
Multinomial Logit Model (2)

$$\frac{PA_i}{PC_i} = e^{ZA_i}$$

where $ZA_i = \alpha_1 X_{1i} + \alpha_2 X_{2i} + \dots + \alpha_K X_{Ki}$
$$\frac{PB_i}{PC_i} = e^{ZB_i}$$

where $ZB_i = \beta_1 X_{1i} + \beta_2 X_{2i} + \dots + \beta_K X_{Ki}$

Multinomial Logit Model (3)



(c) Pongsa Pornchaiwiseskul, Faculty of Economics, Chulalongkorn University 39

Multinomial Logit Model (4)

$$PA_{i} = \frac{e^{ZA_{i}}}{1 + e^{ZA_{i}} + e^{ZB_{i}}}$$
$$PB_{i} = \frac{e^{ZB_{i}}}{1 + e^{ZA_{i}} + e^{ZB_{i}}}$$

(c) Pongsa Pornchaiwiseskul, Faculty of Economics, Chulalongkorn University

Multinomial Logit Model (5)

ML Estimation of Multinomial Logit model

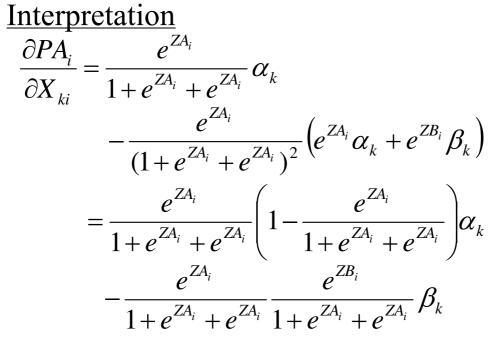
$$\max_{\beta} L = \prod_{i=1}^{n} (PA_i)^{JA_i} (PB_i)^{JB_i} (1 - PA_i - PB_i)^{(1 - JA_i - JB_i)}$$

or
$$\max_{\beta} \ln L = \sum_{i=1}^{n} [JA_i \ln(PA_i) + JB_i \ln(PB_i) + (1 - JA_i - JB_i) \ln(1 - PA_i - PB_i)]$$

Solving FOC yields $\hat{\alpha}, \beta$

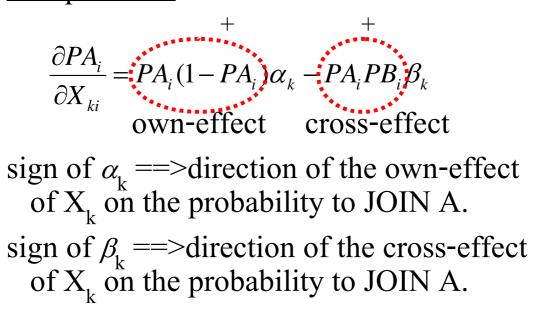
(c) Pongsa Pornchaiwiseskul, Faculty of Economics, Chulalongkorn University 41

Multinomial Logit Model (6)



⁽c) Pongsa Pornchaiwiseskul, Faculty of Economics, Chulalongkorn University

Multinomial Logit Model (6) Interpretation



(c) Pongsa Pornchaiwiseskul, Faculty of Economics, Chulalongkorn University

Other Choice Models

- Nested Logit /Serial Logit
- Ordered Logit
- Generalized Extreme-Value (GEV)

LIMDEP

Models for Limited Dependent

Varaibles

- Censored Regression
- Tobit Models

(c) Pongsa Pornchaiwiseskul, Faculty of Economics, Chulalongkorn University