Bi-variate Statistics

Focus on continuous RV's

$\mathrm{X} \sim$ cont. random variable
$\mathrm{Y} \sim$ cont. random variable
(c) Pongsa Pornchaiwiseskul, Faculty of Economics, Chulalon६̨

Joint Probability Distribution

- Joint CDF

$$
F(x, y) \equiv \operatorname{Pr}(X \leq x, Y \leq y)
$$

- Joint pdf

$$
f(x, y)=\frac{\partial^{2} F}{\partial x \partial y}
$$

(c) Pongsa Pornchaiwiseskul, Facultz of Economics, Chulaloņ

Interdependence between RV's

Three Levels of Interdependence

- Stochastic Interdependence
- Mean-dependence, variancedependence
- Correlation
(c) Pongsa Pornchaiwiseskul, Faculty of Economics, Chulalon६̨

Stochastic Independence

X and Y are stochastically
independent if $f(x, y)=g(x) h(y)$ for all x, y.
Otherwise, they are stochastically interdependent.
No direction.
(c) Pongsa Pornchaiwiseskul, Facult乡 of Economics, Chulalon६̨

Unconditional Probability

Marginal pdf of X (unconditional on y)

$$
g(x)=\int_{-\infty}^{\infty} f(x, y) d y \text { not in term of } \mathrm{y}
$$

Marginal pdf of Y (unconditional on x)

$$
h(y)=\int_{-\infty}^{\infty} f(x, y) d x \text { not in term of } \mathrm{x}
$$

(c) Pongsa Pornchaiwiseskul, Faculty of Economics, Chulalonॄ

Conditional Probability

Conditional pdf of X given $\mathrm{Y}=\mathrm{y}$

$$
G(x \mid y)=\frac{f(x, y)}{h(y)} \quad \text { in term of }(\mathrm{x}, \mathrm{y})
$$

Conditional pdf of Y given $\mathrm{X}=\mathrm{x}$

$$
H(y \mid x)=\frac{f(x, y)}{g(x)} \quad \text { in term of }(\mathrm{x}, \mathrm{y})
$$

(c) Pongsa Pornchaiwiseskul, Faculty of Economics, Chulalonॄ

Uncond. Mean \& Variance

Unconditional mean of Y

$$
\mu_{Y}=\int_{-\infty}^{\infty} y h(y) d y \quad \text { a constant }
$$

Unconditional variance of Y

$$
\sigma_{Y}^{2}=\int_{-\infty}^{\infty}\left(y-\mu_{Y}\right)^{2} h(y) d y \quad \text { a constant }
$$

(c) Pongsa Pornchaiwiseskul, Faculty of Economics, Chulalonॄ

Conditional Mean \& Variance

Conditional mean of Y given $\mathrm{X}=\mathrm{x}$

$$
\mu_{Y \mid X}=\int_{-\infty}^{\infty} y H(y \mid x) d y \quad \begin{aligned}
& \text { in term of } \mathrm{x} \\
& \text { but not } \mathrm{y}
\end{aligned}
$$

Conditional variance of Y given $\mathrm{X}=\mathrm{x}$

$$
\sigma_{Y \mid X}^{2}=\int_{-\infty}^{\infty}\left(y-\mu_{Y \mid X}\right)^{2} H(y \mid x) d y \quad \begin{aligned}
& \text { in term of } \mathrm{x} \\
& \text { but not } \mathrm{y}
\end{aligned}
$$

(c) Pongsa Pornchaiwiseskul, Facult\& of Economics, Chulalonฐ

Mean-independence (1)

Y is mean-independent from X if
μ_{YXX} is constant or does not depend on the value of
X
X is mean-independent from Y if
μ_{XYY} is constant or does not depend on the value of Y
(c) Pongsa Pornchaiwiseskul, Facult9 of Economics, Chulalonॄ

Mean-independence (2)

Note that

Direction matters.
(c) Pongsa Pornchaiwiseskul, Faculty@f Economics, Chulalonя

Variance-independence (1)

Y is variance-independent from X if
σ_{YX} is constant or does not depend on the value of X

X is variance-independent from Y if
σ_{XYY} is constant or does not depend on the value of Y
(c) Pongsa Pornchaiwiseskul, Faculty bf Economics, Chulalons

Variance-independence (2)

Note that

Direction matters.
(c) Pongsa Pornchaiwiseskul, Faculty $2 f$ Economics, Chulalong

Population Covariance (1)

$\underline{\text { Definition }}$

$$
\begin{aligned}
\sigma_{X Y} & =E\left[\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right] \\
& =\iint\left(x-\mu_{X}\right)\left(y-\mu_{Y}\right) f(x, y) d x d y
\end{aligned}
$$

a constant
(c) Pongsa Pornchaiwiseskul, Faculty 3 f Economics, Chulaloņ

Population Covariance (2)

Sign of Covariance
Positive $==>$ if one RV is above or below its mean, the other RV tends to be also above or below its mean

Negative $==>$ if one RV is above or below its mean, the other RV tends to be below or above its mean
(c) Pongsa Pornchaiwiseskul, Faculty 4 f Economics, Chulalons

Population Covariance (3)

Magnitude of Covarinace
unbounded
depends on the units of both RV's
Unit of covariance
$=$ unit of X times unit of Y
e.g., X is in Baht and Y is in Kilogram
σ_{XY} is in Baht-Kilogram
(c) Pongsa Pornchaiwiseskul, Faculty 5 f Economics, Chulalons

Population Correlation (1)

- Definition

$$
\rho_{X Y}=\frac{\sigma_{X Y}}{\sigma_{X} \sigma_{Y}}
$$

- Sign of Correlation
- same as that of Covariance
(c) Pongsa Pornchaiwiseskul, Faculty of Economics, Chulalonc

Population Correlation (2)

Magnitude of Correlation
always bounded between -1 and 1

$$
-1 \leq \rho_{X Y} \leq+1
$$

Unit of Correlation
no unit
comparable between populations
(c) Pongsa Pornchaiwiseskul, Faculty 7 f Economics, Chulalons

Population Correlation (3)

Interpretation of Correlation
$\rho_{\mathrm{XY}}=+1=\Rightarrow$ If a variable is above or below its mean, the other will be above or below its own mean with certainty
$\rho_{\mathrm{XY}}=-1==>$ If a variable is above or below its mean, the other will be below or above its own mean with certainty
$\rho_{\mathrm{XY}}=0=\Rightarrow$ If a variable is deviated from its mean, the other will be expected at its mean
(c) Pongsa Pornchaiwiseskul, Faculty \&f Economics, Chulalon¢

Sample Covariance

s_{XY} is an estimator for σ_{XY}

Required paired sample
Estimator

$$
s_{X Y}=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)}{n-1}
$$

(c) Pongsa Pornchaiwiseskul, Facultyめf Economics, Chulalonॄ

Paired Sample of Size \boldsymbol{n}

(c) Pongsa Pornchaiwiseskul, Facultz@f Economics, Chulalon६̨

Sample Correlation (1)

r_{XY} is an estimator of $\boldsymbol{\rho}_{\mathrm{XY}}$
$\underline{\text { Definition }} \quad r_{X Y}=\frac{s_{X Y}}{s_{X} s_{Y}}$
$\underline{\text { Sign of sample Correlation }}$
same as that of sample Covariance
(c) Pongsa Pornchaiwiseskul, Faculť bf Economics, Chulalonॄ

Sample Correlation (2)

Magnitude of Sample Correlation

 same as population correlation always bounded between -1 and 1$$
-1 \leq r_{X Y} \leq+1
$$

$\underline{\text { Unit of sample Correlation }}$
no unit
comparable between data sets
(c) Pongsa Pornchaiwiseskul, Facult22f Economics, Chulalons

Hierarchy of Independence

(c) Pongsa Pornchaiwiseskul, Facult23f Economics, Chulalons

Tests for Independence

- Test for Stochastic Independence
- Test for Zero Correlation
- Test for Mean-independence
(c) Pongsa Pornchaiwiseskul, Facultz4f Economics, Chulalon६

Test for Stochastic Independence

- non-parametric test
- generally included in fundamental Statistics textbooks
- require a match-paired sample
- generate a frequency table
- compare observed (actual) frequencies with expected (if independent) frequencies
- Chi-square test
(c) Pongsa Pornchaiwiseskul, Facult25f Economics, Chulalons

Test for Zero Correlation

$$
\begin{aligned}
& \mathrm{H}_{0}: \rho_{X Y}=0 \\
& \mathrm{H}_{1}: \rho_{X Y} \neq 0
\end{aligned}
$$

Theorem

$$
t_{\text {cal }}=\frac{r_{X Y}}{\sqrt{\frac{1-r_{X Y}^{2}}{n-2}}} \sim t(n-2)
$$

Perform a Two-sided test.
(c) Pongsa Pornchaiwiseskul, Facult2のf Economics, Chulalonc

Tests for Mean-independence

- Analysis of Variance (ANOVA)
assume no functional form of the conditional mean
- Regression Analysis
assume a functional form of the conditional mean
(c) Pongsa Pornchaiwiseskul, Faculť2ff Economics, Chulaloņ

One-way ANOVA (1)

- Question: Is Y mean-independent from X?
- assume no functional form of the conditional mean of Y given X
- ideal for X with discrete values
- group the Y by the values of independent variable X
- test for the variation between groups
(c) Pongsa Pornchaiwiseskul, Facult2\&f Economics, Chulalons

One-way ANOVA (2)

Assumptions

- Variance-independence or $\sigma_{Y \mid X}^{2}=\sigma^{2}$ where σ^{2} is a positive parameter.
- Given $\mathrm{X}=\mathrm{x}_{\mathrm{i}}, \mathrm{Y} \mid \mathrm{x}_{\mathrm{i}} \sim \mathrm{N}\left(\mu_{\mathrm{i}}, \sigma^{2}\right)$
(c) Pongsa Pornchaiwiseskul, Facultzof Economics, Chulalon६

One-way ANOVA (3)

$$
\begin{aligned}
& \mathrm{H}_{0}: \mu_{1}=\mu_{2}=\ldots=\mu_{m} \\
& \mathrm{H}_{1}: \mu_{1} \neq \mu_{2} \neq \ldots \neq \mu_{m}
\end{aligned}
$$

If H_{0} is true, $\mu_{1}=\mu_{2}=\ldots=\mu_{\mathrm{m}}=\mu_{0}$ where μ_{0} is the common mean.
(c) Pongsa Pornchaiwiseskul, Faculţ̣f Economics, Chulaloņ

One-way ANOVA (4)

Define
$\bar{Y}_{i}=$ sample conditional mean of Y given $\mathrm{X}=\mathrm{x}_{\mathrm{i}}$
$=$ estimator of μ_{i}
Calculated from a sub-sample of size n_{i}

$$
\bar{Y}_{i}=\frac{1}{n_{i}} \sum_{j=1}^{n_{i}} Y_{i j}
$$

(c) Pongsa Pornchaiwiseskul, Faculţ bf Economics, Chulaloņ

One-way ANOVA (5)

$\sigma^{2}=$ within-group variation or pooled variance of Y
$=$ estimator of σ^{2}

$$
\widehat{\sigma^{2}}=\frac{\sum_{i=1}^{m} \sum_{j=1}^{n_{i}}\left(Y_{i j}-\bar{Y}_{i}\right)^{2}}{\sum_{i=1}^{m}\left(n_{i}-1\right)}
$$

(c) Pongsa Pornchaiwiseskul, Facult3̂f Economics, Chulalonç

One-way ANOVA (6)

$\overline{\bar{Y}}=$ sample unconditional mean of Y
$=$ estimator of μ_{0} if H_{0} is true
Calculated from all the sub-samples with total sample size $=\mathrm{n}_{1}+\mathrm{n}_{2}+\ldots+\mathrm{n}_{\mathrm{m}}$

$$
\overline{\bar{Y}}=\left(\sum_{i=1}^{m} \sum_{j=1}^{n_{i}} Y_{i j}\right) /\left(\sum_{i=1}^{m} n_{i}\right)
$$

(c) Pongsa Pornchaiwiseskul, Faculţ̉̉̉f Economics, Chulalonॄ

One-way ANOVA (7)

$\sigma^{2}=$ between-group variation
$=$ also estimator of σ^{2} if H_{0} is true

$$
\widehat{\sigma^{2}}=\frac{\sum_{i=1}^{m} n_{i}\left(\bar{Y}_{i}-\overline{\bar{Y}}\right)^{2}}{m-1}
$$

(c) Pongsa Pornchaiwiseskul, Faculţ3f Economics, Chulaloņ

One-way ANOVA (8)

Theorem

$$
\begin{aligned}
& (n-m) \frac{\widehat{\sigma^{2}}}{\sigma^{2}} \sim \chi^{2}(n-m) \text { where } n=\sum_{i=1}^{m} n_{i} \\
& \widehat{\widehat{\sigma^{2}}} \\
& (m-1) \frac{\sigma^{2}}{\sigma^{2}} \sim \chi^{2}(m-1)
\end{aligned}
$$

(c) Pongsa Pornchaiwiseskul, Faculty 5 f Economics, Chulalong

One-way ANOVA (9)
 $$
F_{c a l}=\left(\frac{(m-1) \frac{\widehat{\sigma^{2}}}{\sigma^{2}}}{m-1}\right) /\left(\frac{(n-m) \frac{\widehat{\sigma^{2}}}{\sigma^{2}}}{n-m}\right)
$$
 $$
=\frac{\widehat{\sigma^{2}}}{\widehat{\sigma^{2}}} \sim F(m-1, n-m)
$$

(c) Pongsa Pornchaiwiseskul, Facultyæf Economics, Chulaloņ

One-way ANOVA (10)

(c) Pongsa Pornchaiwiseskul, Faculty 7 f Economics, Chulalons

One-way ANOVA (11)

Mean-independence if H_{0} has
been accepted
Do an ANOVA exercise in Excel
(c) Pongsa Pornchaiwiseskul, Facult¥̊ff Economics, Chulalon६

Regression Analysis (1)

- assume a functional form of the conditional mean up to its parameters
- parameters are unknown
- estimate parameters
- test the parameters
(c) Pongsa Pornchaiwiseskul, Faculţわf Economics, Chulalonॄ

Regression Analysis (2)

Focus on the mean-dependence and variance-dependence of Y on X

In general,

$$
\begin{aligned}
& \mu_{Y \mid X}=m(x) \quad \text { a function of } \mathrm{x} \\
& \sigma_{Y \mid X}^{2}=v(x) \quad \text { a function of } \mathrm{x}
\end{aligned}
$$

(c) Pongsa Pornchaiwiseskul, Faculty $\oplus f$ Economics, Chulaloņ

Simple Linear Regression

Assumptions

1) $\mu_{Y \mid X}=\beta_{1}+\beta_{2} x$ a linear function of x
2) $\sigma_{Y \mid X}^{2}=\sigma^{2} \quad$ variance-independent
3) $Y \mid X \sim N\left(\beta_{1}+\beta_{2} X, \sigma^{2}\right)$
β_{1}, β_{2} and σ^{2} are unknown parameters
(c) Pongsa Pornchaiwiseskul, Faculty bf Economics, Chulalon६̨

Simple Linear Regression

Model (1)

The model based upon the assumptions

$$
Y_{\mathrm{i}}=\beta_{1}+\beta_{2} X_{\mathrm{i}}+\boldsymbol{\varepsilon}_{\mathrm{i}}
$$

where $\mathrm{i}=$ index of the observation
$\boldsymbol{E}_{i}=$ identical and independent normal error term

$$
\boldsymbol{E}_{\mathrm{i}} \sim \mathrm{~N}\left(0, \sigma^{2}\right) \text { for all } \mathrm{i}=1, \ldots, n
$$

(c) Pongsa Pornchaiwiseskul, Faculty2ff Economics, Chulaloņ

Simple Linear Regression

Model (2)

X_{i} is given or non-random but Y_{i} or $\boldsymbol{E}_{\mathrm{i}}$ is randomly sampled.
It is also required that $\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}>0$
Why? Will see.
(c) Pongsa Pornchaiwiseskul, Facultyłff Economics, Chulalon६

Estimator of $\boldsymbol{\beta}_{1}$ and $\boldsymbol{\beta}_{2}$

Ordinary Least Square(OLS) Method

$$
\hat{\beta}_{2}=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}
$$

$$
\hat{\beta}_{1}=\bar{Y}-\hat{\beta}_{2} \bar{X}
$$

The "hat" about the parameter symbol denotes the estimator for the parameter.
(c) Pongsa Pornchaiwiseskul, Faculty 4 Economics, Chulalong

Estimator of $\boldsymbol{\sigma}^{\boldsymbol{2}}$

$$
\widehat{\sigma^{2}}=\frac{\sum_{i=1}^{n}\left\{Y_{i}-\left(\hat{\beta}_{1}+\hat{\beta}_{2} X_{i}\right)\right\}^{2}}{n-2}
$$

Why n-2?

(c) Pongsa Pornchaiwiseskul, Faculty5f Economics, Chulalon¢

Properties of OLS Estimators (1)

$$
\begin{aligned}
& E\left(\hat{\beta}_{2}\right)=\beta_{2} \text { and } V\left(\hat{\beta}_{2}\right)=\sigma^{2}\left(\frac{1}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}\right) \\
& E\left(\hat{\beta}_{1}\right)=\beta_{1} \text { and } V\left(\hat{\beta}_{1}\right)=\sigma^{2}\left(\frac{1}{n}+\frac{\bar{X}^{2}}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}\right)
\end{aligned}
$$

(c) Pongsa Pornchaiwiseskul, Facultyf(ff Economics, Chulalonॄ

Properties of OLS Estimators (2)

(c) Pongsa Pornchaiwiseskul, Faculty7f Economics, Chulalon६

Properties of OLS Estimators (3)

$$
\begin{gathered}
\hat{\beta}_{2} \sim N\left(\beta_{2}, \sigma^{2}\left(\frac{1}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}\right)\right) \\
\hat{\beta}_{1} \sim N\left(\beta_{1}, \sigma^{2}\left(\frac{1}{n}+\frac{\bar{X}^{2}}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}\right)\right)
\end{gathered}
$$

(c) Pongsa Pornchaiwiseskul, Faculty\&f Economics, Chulalonॄ

Properties of OLS Estimators (4)

$$
\begin{gathered}
(n-2) \frac{\widehat{\sigma^{2}}}{\sigma^{2}} \sim \chi^{2}(n-2) \\
\widehat{\wedge}\left(\sigma^{2}\right)=\sigma^{2} \text { and } V\left(\sigma^{2}\right)=\frac{2 \sigma^{4}}{n-2}
\end{gathered}
$$

(c) Pongsa Pornchaiwiseskul, Facultyねf Economics, Chulalon६̨

Properties of OLS Estimators (5)

$$
t_{c a l}=\frac{\frac{\hat{\beta}_{2}-\beta_{2}}{\sqrt{\sigma^{2} \frac{1}{\sum\left(X_{i}-\bar{X}\right)^{2}}}}}{\sqrt{\frac{(n-2) \frac{\sigma^{2}}{\sigma^{2}}}{n-2}}}=\frac{\hat{\beta}_{2}-\beta_{2}}{\sqrt{\widehat{\sigma^{2}} \frac{1}{\sum\left(X_{i}-\bar{X}\right)^{2}}}} \sim t(n-2)
$$

(c) Pongsa Pornchaiwiseskul, Facult£øf Economics, Chulalonॄ

Statistical Inference (1)

(1- α) 100% Confidence Interval for β_{2}

$$
=\hat{\beta}_{2} \pm t_{\frac{\alpha}{2}} s e\left(\hat{\beta}_{2}\right)
$$

where $\operatorname{se}\left(\hat{\beta}_{2}\right)=\sqrt{\widehat{\sigma}^{2}\left(\frac{1}{\sum\left(X_{i}-\bar{X}\right)^{2}}\right)}$
(c) Pongsa Pornchaiwiseskul, Faculty bf Economics, Chulalon६

Statistical Inference (2)

$$
\begin{aligned}
& \mathrm{H}_{0}: \beta_{2}=0 \\
& \mathrm{H}_{1}: \beta_{2} \neq 0
\end{aligned}
$$

Perform a two-tailed t-test

$$
t_{c a l}=\frac{\hat{\beta}_{2}-0}{s e\left(\hat{\beta}_{2}\right)} \sim t(n-2)
$$

(c) Pongsa Pornchaiwiseskul, Facult \ddagger 亿f Economics, Chulalon६

Statistical Inference (3)

Y has Mean-independence from X at significant level of α if the (1$\alpha) 100 \%$ Confidence Interval for β_{2}
covers zero or $\mathrm{H}_{0}: \beta_{2}=0$ has been
accepted at significant level α
(c) Pongsa Pornchaiwiseskul, Facult $\mathbf{3}$ bf Economics, Chulalon

$$
\begin{aligned}
& \mathrm{H}_{0}: \beta_{2}=0.6 \\
& \mathrm{H}_{1}: \beta_{2} \neq 0.6
\end{aligned}
$$

Perform a two-tailed t-test

$$
t_{c a l}=\frac{\hat{\beta}_{2}-0.6}{s e\left(\hat{\beta}_{2}\right)} \sim t(n-2)
$$

(c) Pongsa Pornchaiwiseskul, Facult $\$$ bf Economics, Chulalon६

staticticitinemen (5)

$$
\begin{aligned}
& \mathrm{H}_{0}: \sigma^{2}=4 \\
& \mathrm{H}_{1}: \sigma^{2}>4
\end{aligned}
$$

Perform a one-tailed Chi-square-test

$$
\chi_{c a l}^{2}=(n-2) \frac{\sigma^{2}}{4} \sim \chi^{2}(n-2)
$$

(c) Pongsa Pornchaiwiseskul, Faculty 5 f Economics, Chulalonç

Central Limit Theorem for $\hat{\beta}_{1}, \hat{\beta}_{2}$

- Violation of normal distribution of \mathcal{E} but still $\mathrm{E}(\boldsymbol{\mathcal { E }})=0$ and $\mathrm{V}(\boldsymbol{\mathcal { E }})=\boldsymbol{\sigma}^{2}$ and still \mathcal{E}_{i} is i.i.d.
- $\hat{\beta}_{1}$ and $\hat{\beta}_{2}$ are approximately normal when $n \rightarrow \infty$
- CI and hypothesis testing for β_{1}, β_{2} and σ^{2} are still acceptable if the sample is large
(c) Pongsa Pornchaiwiseskul, Facultyøf Economics, Chulalon¢

Gauss-Markov Theorem (1)

Given that X is non-random,
OLS estimator ($\hat{\beta}_{1}, \hat{\beta}_{2}$) is BLUE
Best
Linear
Unbiased
Estimator
Note that Gauss-Markov Theorem does not requires normality assumption
(c) Pongsa Pornchaiwiseskul, Faculty 7 f Economics, Chulalons

Gauss-Markov Theorem (2)

OLS estimator is a linear estimator. E.g.,

$$
\begin{aligned}
\hat{\beta}_{2} & =\sum_{i=1}^{n} \frac{1}{c}\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right) \text { where } c=\sum_{j=1}^{n}\left(X_{j}-\bar{X}\right)^{2} \\
& =\sum_{i=1}^{n} \frac{1}{(}\left(X_{i}-\bar{X}\right) Y_{i}-\sum_{i=1}^{n} \frac{1}{c}\left(X_{i}-\bar{X}\right) \bar{Y}=\sum_{i=1}^{n} k_{i} Y_{i}
\end{aligned}
$$

Is linear in Y (the random component). Note that k_{i} is non-random as it is in terms of X only.
(c) Pongsa Pornchaiwiseskul, Faculty8f Economics, Chulalons

Gauss-Markov Theorem (3)

OLS estimator is unbiased
OLS estimators has the smallest variance among linear estimators. There could be a non-linear estimator that is more efficient.
(c) Pongsa Pornchaiwiseskul, Faculty历f Economics, Chulalonॄ

