Multi-variate Statistics

Extension of Bi-variate Statistics

$$
(\mathrm{Y}, \boldsymbol{X}) \sim \text { random variables }
$$

where
$\boldsymbol{X} \sim$ vectors of K random variables

$$
\boldsymbol{X}=\left[\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{K}\right]
$$

$Y \sim$ a single random variable
(c) Pongsa Pornchaiwiseskul, Faculty of Eđonomics, Chulalongkorn Univ

Multi-variate Analyses

- Pair-wise Covariance or

Correlation

- Multi-way ANOVA
- Multiple Regression
(c) Pongsa Pornchaiwiseskul, Faculty of E2onomics, Chulalongkorn Univ

Multiple Regression Analysis

Focus on the dependency of Y on the \boldsymbol{X} vector, e.g.,
$\mu_{Y \mid X}=m\left(X_{1}, X_{2}, \ldots, X_{K}\right)=m(X)$
$\sigma_{Y \mid X}^{2}=v\left(X_{1}, X_{2}, \ldots, X_{K}\right)=v(X)$
X_{k} - explanatory or independent variable,

$$
k=1, \ldots, K
$$

Y-dependent variable
(c) Pongsa Pornchaiwiseskul, Faculty of Eßonomics, Chulalongkorn Univ

Multiple Linear Regression

Assumptions

1) linearity $\mu_{Y \mid X}=X \boldsymbol{\beta}$
where $\boldsymbol{\beta}=\left[\begin{array}{llll}\beta_{1} & \beta_{2} & \ldots & \beta_{K}\end{array}\right]^{\mathrm{T}}$ are unknown parameters
2) variance-independent or $\sigma_{Y \mid X}^{2}=\sigma^{2}$
3) normality, i.e. $\quad Y \mid X \sim N\left(X \boldsymbol{\beta}, \sigma^{2}\right)$
(c) Pongsa Pornchaiwiseskul, Faculty of Edonomics, Chulalongkorn Univ

CLNRM (1)

Classical Linear Normal Regression

- Model is based upon the āssumptions

$$
Y_{i}=\boldsymbol{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}_{i}
$$

where $i=$ index of the observation $\boldsymbol{\varepsilon}_{\mathrm{i}}=$ identical and independent normal error term

$$
\boldsymbol{\varepsilon}_{i} \sim \mathrm{~N}\left(\overline{\left.0, \sigma^{2}\right)} \text { for all } i=1, \ldots, n\right.
$$

(c) Pongsa Pornchaiwiseskul, Faculty of Eбonomics, Chulalongkorn Univ

CLNRM (2)

\boldsymbol{X}_{i} is pre-selected or non-random but Y_{i} or
\mathcal{E}_{i} is randomly sampled.
$X_{i} \boldsymbol{\beta}$ is the non-random component of Y_{i}
\mathcal{E}_{i} is the random component of Y_{i}.
Note that X_{1} can be intentionally set to one for all observations so that its

CLNRM

Matrix Representation (1)

> Define
> $\mathbf{Y}=\left[\begin{array}{c}Y_{1} \\ Y_{2} \\ \vdots \\ Y_{n}\end{array}\right], \mathbf{X}=\left[\begin{array}{cccc}X_{11} & X_{21} & \ldots & X_{K 1} \\ X_{12} & X_{22} & \ldots & X_{K 1} \\ \vdots & \vdots & \vdots & \vdots \\ X_{1 n} & X_{2 n} & \ldots & X_{K n}\end{array}\right], \boldsymbol{\mathcal { E }}=\left[\begin{array}{c}\varepsilon_{1} \\ \varepsilon_{2} \\ \vdots \\ \varepsilon_{n}\end{array}\right]$
(c) Pongsa Pornchaiwiseskul, Faculty of Eむonomics, Chulalongkorn Univ

OLS Estimation for CLNRM (1)

$$
\min _{\boldsymbol{\beta}} \sum_{i=1}^{n}\left[Y_{i}-\left(X_{1 i} \beta_{1}+X_{2 i} \beta_{2}+\ldots+X_{K i} \beta_{K}\right)\right]^{2}
$$

or

$$
\min _{\beta} \quad[\mathbf{Y}-\mathbf{X} \boldsymbol{\beta}][\mathbf{Y}-\mathbf{X} \boldsymbol{\beta}]
$$

$$
\beta
$$

(c) Pongsa Pornchaiwiseskul, Faculty of E8onomics, Chulalongkorn Univ

OLS Estimation for CLNRM (2)

First-Order Conditions

$$
\begin{gathered}
2[-\mathbf{X}]^{\mathrm{T}}[\mathbf{Y}-\mathbf{X} \boldsymbol{\beta}]=\mathbf{0} \\
-\mathbf{X}^{\mathrm{T}} \mathbf{Y}+\mathbf{X}^{\mathrm{T}} \mathbf{X} \boldsymbol{\beta}=\mathbf{0} \\
\hat{\boldsymbol{\beta}}=\left[\mathbf{X}^{\mathrm{T}} \mathbf{X}\right]^{-1} \mathbf{X}^{\mathrm{T}} \mathbf{Y}
\end{gathered}
$$

(c) Pongsa Pornchaiwiseskul, Faculty of EOonomics, Chulalongkorn Univ

OLS Estimation for CLNRM (3)

Estimator for σ^{2}

$$
\begin{aligned}
\widehat{\sigma^{2}} & =\frac{1}{n-K}[\mathbf{Y}-\mathbf{X} \hat{\boldsymbol{\beta}}]^{\mathrm{T}}[\mathbf{Y}-\mathbf{X} \hat{\boldsymbol{\beta}}] \\
& =\frac{1}{n-K}\left[\mathbf{Y}^{\mathrm{T}} \mathbf{Y}-\mathbf{Y}^{\mathrm{T}} \hat{\mathbf{Y}}\right]
\end{aligned}
$$

where $\hat{\mathbf{Y}}=\mathbf{X} \hat{\boldsymbol{\beta}}$ is called the fitted value of \mathbf{Y}
Why $n-K$?
(c) Pongsa Pornchaiwiseskul, Faculty of EdOnomics, Chulalongkorn Univ

Properties of OLS estimators (1)

Theorem $E(\hat{\boldsymbol{\beta}})=\boldsymbol{\beta}$

$$
V(\hat{\boldsymbol{\beta}})=\sigma^{2}\left[\mathbf{X}^{\top} \mathbf{x}\right]^{-1}
$$

Does not require normality assumption.
Note that $\hat{\boldsymbol{\beta}}$ is an unbiased estimator of $\boldsymbol{\beta}$.
(c) Pongsa Pornchaiwiseskul, Faculty of Eddnomics, Chulalongkorn Univ

Properties of OLS estimators (5)

Variance-Covariance Matrix of $\hat{\boldsymbol{\beta}}$

$$
V(\hat{\boldsymbol{\beta}})=\sigma^{2}\left[\mathbf{X}^{\boldsymbol{\top}} \mathbf{X}\right]^{-1}
$$

$$
=\left[\begin{array}{cccc}
V\left(\hat{\beta}_{1}\right) & C\left(\hat{\beta}_{1}, \hat{\beta}_{2}\right) & \cdots & C\left(\hat{\beta}_{1}, \hat{\beta}_{K}\right) \\
C\left(\hat{\beta}_{2}, \hat{\beta}_{1}\right) & V\left(\hat{\beta}_{2}\right) & \cdots & C\left(\hat{\beta}_{2}, \hat{\beta}_{K}\right) \\
\vdots & \vdots & \ddots & \vdots \\
C\left(\hat{\beta}_{K}, \hat{\beta}_{1}\right) & C\left(\hat{\beta}_{K}, \hat{\beta}_{2}\right) & \cdots & V\left(\hat{\beta}_{K}\right)
\end{array}\right]
$$

σ^{2} is generally unknown.
(c) Pongsa Pornchaiwiseskul, Faculty of Ed®nomics, Chulalongkorn Univ

Properties of OLS estimators (6)

Estimated Variance-Covariance Matrix of $\hat{\boldsymbol{\beta}}$

$$
\begin{aligned}
\hat{V}(\hat{\boldsymbol{\beta}}) & \widehat{\sigma^{2}\left(\mathbf{X}^{\mathrm{T}} \mathbf{X}\right)^{-1}} \\
& =\left[\begin{array}{cccc}
\hat{V}\left(\hat{\beta}_{1}\right) & \hat{C}\left(\hat{\beta}_{1}, \hat{\beta}_{2}\right) & \cdots & \hat{C}\left(\hat{\beta}_{1}, \hat{\beta}_{K}\right) \\
\hat{C}\left(\hat{\beta}_{2}, \hat{\beta}_{1}\right) & \hat{V}\left(\hat{\beta}_{2}\right) & \cdots & \hat{C}\left(\hat{\beta}_{2}, \hat{\beta}_{K}\right) \\
\vdots & \vdots & \ddots & \vdots \\
\hat{C}\left(\hat{\beta}_{K}, \hat{\beta}_{1}\right) & \hat{C}\left(\hat{\beta}_{K}, \hat{\beta}_{2}\right) & \cdots & \hat{V}\left(\hat{\beta}_{K}\right)
\end{array}\right]
\end{aligned}
$$

(c) Pongsa Pornchaiwiseskul, Faculty of Eđőnomics, Chulalongkorn Univ

Properties of OLS estimators (7)

Standard Deviation of $\hat{\beta}_{k}$

$$
s d\left(\hat{\beta}_{k}\right)=\sqrt{V\left(\hat{\beta}_{k}\right)}
$$

Standard Error of $\hat{\beta}_{k}$

$$
\operatorname{se}\left(\hat{\beta}_{k}\right)=\sqrt{\hat{V}\left(\hat{\beta}_{k}\right)}
$$

(c) Pongsa Pornchaiwiseskul, Faculty of EdAnomics, Chulalongkorn Univ

Properties of OLS estimators (8)

 $$
=\frac{\hat{\beta}_{k}-\beta_{k}}{\operatorname{se}\left(\hat{\beta}_{k}\right)} \sim t(n-K)
$$

<<Basis for statistical inference>>
(c) Pongsa Pornchaiwiseskul, Faculty of Eđőnomics, Chulalongkorn Univ

Central Limit Theorem (1)

Similar to that for the Simple Linear Regression Model. Even though the err or terms are not normal, the properties of OLS estimators asymptotically hold when the sample size is very large.

Gauss-Markov Theorem (1)

Similar to that for the Simple Linear
Regression Model. Given that \mathbf{X} is non
-random, OLS estimator is Best Linear
Unbiased Estimator.
(c) Pongsa Pornchaiwiseskul, Faculty of EđØnomics, Chulalongkorn Univ

Coefficient of Determination (1)

R^{2} is a measure for goodness-of-fit. How
well does the model fit the observed data
? Low R^{2} implies "bad" fit.
Definition $\quad R^{2} \equiv 1-\frac{S S R}{S S T}$
$\mathrm{SSR}=$ Sum of Squared Residuals
$\mathrm{SST}=$ Sum of Squared Totals
(c) Pongsa Pornchaiwiseskul, Faculty of Ed8nomics, Chulalongkorn Univ

Coefficient of Determination (2)

where $\quad S S R=\sum_{i=1}^{n}\left(Y_{i}-\hat{Y}_{i}\right)^{2}=[\mathbf{Y}-\hat{\mathbf{Y}}]^{\top}[\mathbf{Y}-\hat{\mathbf{Y}}]$

$$
S S T=\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}
$$

Note that, in general, R^{2} cannot be greater than one but could be negative.
(c) Pongsa Pornchaiwiseskul, Faculty of EdOnomics, Chulalongkorn Univ

Coefficient of Determination (3)

Low R^{2} or a bad fit does not mean a bad model. It simply implies a larg e uncertainty in the nature. It is mai nly used as a criterion to select vari ous "candidate" models.
(c) Pongsa Pornchaiwiseskul, Faculty of E20nomics, Chulalongkorn Univ

Coefficient of Determination (4)

If an X_{i} has constant value or a linear
combination of X_{i} 's is equivalent to a c
onstant value, then, $0 \leq R^{2} \leq 1$ always
and $\quad R^{2}=\frac{\sum_{i=1}^{n}\left(\hat{Y}_{i}-\bar{Y}\right)^{2}}{\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}}$
(c) Pongsa Pornchaiwiseskul, Faculty of E2dnomics, Chulalongkorn Univ

Coefficient of Determination (5)

Interpretation if $0 \leq R^{2} \leq 1$
$1-R^{2}$ or SSR/SST can be interpreted as the fraction of total variation of Y due t o the random component (\mathcal{E}).
R^{2} is generally regarded as the fraction of total variation of Y explained by the explanatory variables or due to the nonrandom component.
(c) Pongsa Pornchaiwiseskul, Faculty of E2anomics, Chulalongkorn Univ

Adjusted- $\boldsymbol{R}^{2}(1)$

We can cheat on R^{2} by adding more irrelevant independent variables on the right-hand side, especially when sampl e is small.

Higher $K==>$ smaller $S S R==>$ higher R^{2}
(c) Pongsa Pornchaiwiseskul, Faculty of E2ठ3nomics, Chulalongkorn Univ

Adjusted- \boldsymbol{R}^{2} (2)

Concept
Penalize R^{2} by dividing with ($n-K$)when an irrelevant variable is added.
(c) Pongsa Pornchaiwiseskul, Faculty of E2Anomics, Chulalongkorn Univ

Adjusted- \boldsymbol{R}^{2} (3)

Purpose

For a small sample, it is a better measure for goodness-of-fit than R^{2}. It is also used as criterion to add or r emove an explanatory variable from the model if it does not contradict th eories.
(c) Pongsa Pornchaiwiseskul, Faculty of E25nomics, Chulalongkorn Univ

