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Multi-variate Statistics
Extension of Bi-variate Statistics

(Y, X)~ random variables
where 
X~ vectors of  K random variables

X = [X1,X2,…,XK]
Y ~ a single random variable
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Multi-variate Analyses
• Pair-wise Covariance or 

Correlation
• Multi-way ANOVA
• Multiple Regression
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Multiple Regression Analysis
Focus on the dependency of Y on the 
X vector, e.g., 

Xk - explanatory or independent variable,
k = 1,…,K

Y - dependent variable
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Multiple Linear Regression
Assumptions
1) linearity

where                                      are 
unknown parameters 

2) variance-independent or
3) normality, i.e.
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CLNRM (1)
Classical Linear Normal Regression 

Model is based upon the assumptions
Yi = Xi + i 

where    i = index of the observation
   i = identical and independent

                      normal error term
i ~ N(0, 2) for all i=1,…,n
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CLNRM (2)
Xi is pre-selected or non-random but Yi or 
i is randomly sampled. 

Xi is the non-random component of Yi
i is the random component of Yi. 
Note that X1 can be intentionally set to 

one for all observations so that its 
coefficient 1 becomes the y-intercept.
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CLNRM
 Matrix Representation (1)

Define 
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OLS Estimation for CLNRM (1)
min

 or
min 
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OLS Estimation for CLNRM (2)
First-Order Conditions
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OLS Estimation for CLNRM (3)
Estimator for  2 

where                 is called the fitted value of Y
Why n-K?
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Properties of OLS estimators (1)
Theorem

Does not require normality assumption.

Note that      is an unbiased estimator of .
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   Variance-Covariance Matrix of 
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 2 is generally unknown.

β̂
Properties of OLS estimators (5)
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Estimated Variance-Covariance Matrix of 
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Properties of OLS estimators (6)
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        Standard Deviation of kβ̂
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Standard Error of kβ̂
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Properties of OLS estimators (7)



 (c) Pongsa Pornchaiwiseskul, Faculty of Economics, Chulalongkorn University15

Kn

Kn

sdt k

kk

cal









2

2

)(

)ˆ(

ˆ







Properties of OLS estimators (8)
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<<Basis for statistical inference>>
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Central Limit Theorem (1)
Similar to that for the Simple Linear 

Regression Model. Even though the err
or terms are not normal, the properties 
of OLS estimators asymptotically hold 
when the sample size is very large.
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Gauss-Markov Theorem (1)
Similar to that for the Simple Linear 

Regression Model. Given that X is non
-random, OLS estimator is Best Linear 
Unbiased Estimator.
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Coefficient of Determination (1)
R2 is a measure for goodness-of-fit. How 

well does the model fit the observed data
? Low R2 implies “bad” fit.

Definition
SSR = Sum of Squared Residuals
SST = Sum  of Squared Totals 

SST
SSRR 12
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Coefficient of Determination (2)
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Note that, in general,  R2 cannot be greater 
than one but could be negative.
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Coefficient of Determination (3)
Low R2 or a bad fit does not mean a 

bad model. It simply implies a larg
e uncertainty in the nature. It is mai
nly used as a criterion to select vari
ous “candidate” models. 
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Coefficient of Determination (4)
If an Xi has constant value or a linear 

combination of Xi ’s is equivalent to a c
onstant value, then,                    always

and 
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Coefficient of Determination (5)
Interpretation if 
1-R2 or SSR/SST can be interpreted as 

the fraction of total variation of Y due t
o the random component (). 

R2 is generally regarded as the fraction of 
total variation of Y explained by the 
explanatory variables or due to the non-
random component.
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Adjusted- R2 (1)
We can cheat on R2 by adding more 

irrelevant independent variables on the 
right-hand side, especially when sampl
e is small. 

Higher K ==> smaller SSR ==>higher R2
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Adjusted- R2 (2)
Definition 

Concept 
Penalize R2 by dividing with (n-K)when 

an irrelevant variable is added. 
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Adjusted- R2 (3)
Purpose 
For a small sample, it is a better 

measure for goodness-of-fit than R2. 
It is also used as criterion to add or r
emove an explanatory variable from 
the model if it does not contradict th
eories. 


