Research Methods

William G. Zikmund

Bivariate Analysis -Tests of Differences

Common Bivariate Tests

Common Bivariate Tests

Differences Between Groups

- Contingency Tables
- Cross-Tabulation
- Chi-Square allows testing for significant differences between groups
- "Goodness of Fit"

 R_i = total observed frequency in the *i*th row C_j = total observed frequency in the *j*th column n = sample size

Degrees of Freedom (R-1)(C-1)=(2-1)(2-1)=1Health Economics Research Method 200 Degrees of Freedom d.f.=(R-1)(C-1)

Awareness of Tire Manufacturer's Brand

	Men	Women	Total
Aware	50	10	60
Unaware	<u>15</u> 65	<u>25</u> 35	<u>40</u> 100

Chi-Square Test: Differences Among Groups Example

$$X^{2} = \frac{(50 - 39)^{2}}{39} + \frac{(10 - 21)^{2}}{21} + \frac{(15 - 26)^{2}}{26} + \frac{(25 - 14)^{2}}{14}$$

$\chi^2 = 3.102 + 5.762 + 4.654 + 8.643 =$ $\chi^2 = 22.161$

d.f. = (R-1)(C-1)d.f. = (2-1)(2-1) = 1

 $X^2=3.84$ with 1 d.f.

Differences Between Groups when Comparing Means

- Ratio scaled dependent variables
- t-test
 - When groups are small
 - When population standard deviation is unknown

• z-test

- When groups are large

Null Hypothesis About Mean Differences Between Groups

$$\mu_{1} - \mu_{2}$$
OR

$$\mu_{1} - \mu_{2} = 0$$

t-Test for Difference of Means

$t = \frac{\text{mean 1} - \text{mean 2}}{\text{Variability of random means}}$

 $\overline{X_{I}}$ = mean for Group 1 $\overline{X_{2}}$ = mean for Group 2 $S_{\overline{X_{1}}-\overline{X_{2}}}^{-}$ = the pooled or combined standard error of difference between means.

t-Test for Difference of Means

t-Test for Difference of Means

 \overline{X}_{1} = mean for Group 1 \overline{X}_{2} = mean for Group 2 $S_{\overline{X}_{1}-\overline{X}_{2}}$ = the pooled or combined standard error of difference between means.

Pooled Estimate of the Standard Error

$$S_{\overline{X}_1 - \overline{X}_2} = \sqrt{\left(\frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}\right)\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}$$

Pooled Estimate of the Standard Error

 S_1^2 = the variance of Group 1 S_2^2 = the variance of Group 2 n_1 = the sample size of Group 1 n_2 = the sample size of Group 2

Pooled Estimate of the Standard Error *t*-test for the Difference of Means

$$S_{\overline{X}_1 - \overline{X}_2} = \sqrt{\left(\frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}\right)\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}$$

 S_1^2 = the variance of Group 1 S_2^2 = the variance of Group 2 n_1 = the sample size of Group 1 n_2 = the sample size of Group 2

Degrees of Freedom

• d.f. =
$$n - k$$

• where:

$$-n = n_{1+}n_2$$

-k = number of groups

t-Test for Difference of Means Example

$$S_{\overline{X}_1 - \overline{X}_2} = \sqrt{\left(\frac{(20)(2.1)^2 + (13)(2.6)^2}{33}\right)\left(\frac{1}{21} + \frac{1}{14}\right)}$$

= .797

Comparing Two Groups when Comparing Proportions

- Percentage Comparisons
- Sample Proportion P
- Population Proportion \prod

Differences Between Two Groups when Comparing Proportions

The hypothesis is:

 $H_0: \Pi_1 = \Pi_2$

may be restated as:

 $H_0: \Pi_1 - \Pi_2 = 0$

Z-Test for Differences of Proportions

$$H_o: \pi_1 = \pi_2$$

or

$$H_o: \pi_1 - \pi_2 = 0$$

Z-Test for Differences of Proportions

$$Z = \frac{(p_1 - p_2) - (\pi_1 - \pi_2)}{S_{p_1 - p_2}}$$

Z-Test for Differences of Proportions

 p_1 = sample portion of successes in Group 1 p_2 = sample portion of successes in Group 2 $(\pi_1 - \pi_1)$ = hypothesized population proportion 1 minus hypothesized population proportion 1 minus S_{p1-p2} = pooled estimate of the standard errors of difference of proportions

Z-Test for Differences of Proportions

$$S_{p_1 - p_2} = \sqrt{\overline{p}\overline{q}\left(\frac{1}{n_1} - \frac{1}{n_2}\right)}$$

Z-Test for Differences of Proportions

- \overline{p} = pooled estimate of proportion of success in a sample of both groups
- $\overline{q} = (1 \overline{p})$ or a pooled estimate of proportion of failures in a sample of both groups
- n_1 = sample size for group 1
- n_2 = sample size for group 2

Z-Test for Differences of Proportions

$$\overline{p} = \frac{n_1 p_1 + n_2 p_2}{n_1 + n_2}$$

$$S_{p_1-p_2} = \sqrt{(.375)(.625)\left(\frac{1}{100} + \frac{1}{100}\right)}$$

= .068
$$A Z-Test for Differences of Proportions
$$\overline{p} = \frac{(100)(.35) + (100)(.4)}{100 + 100}$$

= .375$$

Analysis of Variance F-Ratio

$$F = \frac{Variance - between - groups}{Variance - within - groups}$$

Analysis of Variance Sum of Squares

$$SS_{total} = SS_{within} + SS_{between}$$

Analysis of Variance Sum of SquaresTotal

$$SS_{total} = \sum_{i=1}^{n} \sum_{j=1}^{c} (X_{ij} - \overline{\overline{X}})^2$$

Analysis of Variance Sum of Squares

- X_{ij} = individual scores, i.e., the *i*th observation or test unit in the *j*th group
- $\overline{\overline{X}}$ = grand mean
- n = number of all observations or test units in a group
- c = number of j^{th} groups (or columns)

Analysis of Variance Sum of SquaresWithin

Analysis of Variance Sum of SquaresWithin

- X_{ij} = individual scores, i.e., the *i*th observation or test unit in the *j*th group
- $\overline{\overline{X}}$ = grand mean
- n = number of all observations or test units in a group
- c = number of j^{th} groups (or columns)

$$SS_{between} = \sum_{j=1}^{n} n_j (\overline{X}_j - \overline{\overline{X}})^2$$

Analysis of Variance Sum of squares Between

- X_{j} = individual scores, i.e., the *i*th observation or test unit in the *j*th group
- \overline{X} = grand mean
- n_j = number of all observations or test units in a group

Analysis of Variance Mean Squares Between

 $MS_{between} = \frac{SS_{between}}{c-1}$

Analysis of Variance Mean Square Within

 $MS_{within} = \frac{SS_{within}}{cn - c}$

Analysis of Variance F-Ratio

A Test Market Experiment on Pricing

Sales in Units (thousands)

	Regular Price \$.99	Reduced Price \$.89	Cents-Off Coupon Regular Price
Test Market A, B, or C	2 130	145	153
Test Market D, E, or F	118	143	129
Test Market G, H, or I	87	120	96
Test Market J, K, or L	84	131	99
Mean Grand Mean	X ₁ =104.75 X=119.58	X ₂ =134.75	X ₁ =119.25

ANOVA Summary Table Source of Variation

- Between groups
- Sum of squares
 - SSbetween
- Degrees of freedom
 - c-1 where c=number of groups
- Mean squared-MSbetween
 - SSbetween/c-1

ANOVA Summary Table Source of Variation

- Within groups
- Sum of squares
 - SSwithin
- Degrees of freedom
 - cn-c where c=number of groups, n= number of observations in a group
- Mean squared-MSwithin
 - SSwithin/cn-c

ANOVA Summary Table Source of Variation

- Total
- Sum of Squares
 - SStotal
- Degrees of Freedom
 - cn-1 where c=number of groups, n= number of observations in a group

 $F = \frac{MS_{BETWEEN}}{MS_{BETWEEN}}$

MSwithin

X)	licrosoft Ex	cel - MLB (-test					•= W •		- 8 ×
) <u>F</u> ile <u>E</u> dit ⊻	jew <u>I</u> nsert	F <u>o</u> rmat <u>T</u> oo	ols <u>D</u> ata <u>W</u> indow <u>H</u> elp					L	- 리 ×
Ľ	I 🛩 🖬 🕯	🗐 🖪 💞	X 🖻 🛙	🖥 ダ Kalini Kalini 🖓 🖓 S	f≈ Ž↓ Z↓	10 🔮 🛃	0% 🔹 🧟			
Ar	ial	• 1	• B	<i>I</i> <u>U</u> ≣ ≣ ≣ <u>B</u> \$ %	00. 0.+ 0.+ 00.	€₽ €₽ 🛄 -	🅭 - <u>A</u> -			
11	D1	•	=							
	A	B	С	D	E	F	G	Н		
1	Beer	Soda								
2	12	14								
3	16	18								
4	20	20		t-Test: Paired Two Sample for N	⁄leans					
5	20	16								
6	16	16			Variable 1	Variable 2				
7	16	12		Mean	16.83333333	15.8				
8	16	14		Variance	10.35057471	7.820689655				
9	16	16		Observations	30	30				
10	24	14		Pearson Correlation	0.264451682					
11	20	16		Hypothesized Mean Difference	0					
12	16	16		df	29					
13	24	16		t Stat	1.545410551					
14	14	14		P(T<=t) one-tail	0.06654553					
15	14	14		t Critical one-tail	1.699127097					
16	16	16		P(T<=t) two-tail	0.13309106					
17	16	20		t Critical two-tail	2.045230758					
18	16	12								
19	18	16								
20	21	20								
21	16	12								
22	16	16								
23	22	16								
24	20	24								
		et1 / Sheet2	2 / Sheet3	/						
Rea	ady							NUM		

Research Methods

William G. Zikmund

Bivariate Analysis: Measures of Associations

Measures of Association

• A general term that refers to a number of bivariate statistical techniques used to measure the strength of a relationship between two variables.

Relationships Among Variables

- Correlation analysis
- Bivariate regression analysis

Correlation Coefficient

- A statistical measure of the covariation or association between two variables.
- Are dollar sales associated with advertising dollar expenditures?

The Correlation coefficient for two variables, X and Y is

Health Economics Research Method 2003/2.

Correlation Coefficient

• r

- r ranges from +1 to -1
- r = +1 a perfect positive linear relationship
- r = -1 a perfect negative linear relationship
- r = 0 indicates no correlation

Simple Correlation Coefficient

$$r_{xy} = r_{yx} = \frac{\sum \left(X_i - \overline{X}\right) \left(Y_i - \overline{Y}\right)}{\sqrt{\sum \left(X_i - \overline{X}\right)^2 \sum \left(Y_i - \overline{Y}\right)^2}}$$

Simple Correlation Coefficient

Simple Correlation Coefficient Alternative Method

 σ_x^2 = Variance of X σ_y^2 = Variance of Y σ_{xy} = Covariance of X and Y

Coefficient of Determination

$r^{2} = \frac{Explained \text{ variance}}{Total \text{ Variance}}$

Correlation Does Not Meanur Causation

- High correlation
- Rooster's crow and the rising of the sun
 Rooster does not cause the sun to rise.
- Teachers' salaries and the consumption of liquor

Covary because they are both influenced by a third variable

Correlation Matrix

• The standard form for reporting correlational results.

Correlation Matrix

	Var1	Var2	Var3
Var1	1.0	0.45	0.31
Var2	0.45	1.0	0.10
Var3	0.31	0.10	1.0

Walkup's First Laws of Statistics

- Law No. 1
 - Everything correlates with everything, especially when the same individual defines the variables to be correlated.
- Law No. 2
 - It won't help very much to find a good correlation between the variable you are interested in and some other variable that you don't understand any better.

Walkup's First Laws of Statistics

- Law No. 3
 - Unless you can think of a logical reason why two variables should be connected as cause and effect, it doesn't help much to find a correlation between them. In Columbus, Ohio, the mean monthly rainfall correlates very nicely with the number of letters in the names of the months!

Bivariate Regression

- A measure of linear association that investigates a straight line relationship
- Useful in forecasting

Bivariate Linear Regression

- A measure of linear association that investigates a straight-line relationship
- Y = a + bX
- where
- Y is the dependent variable
- X is the independent variable
- a and b are two constants to be estimated

Y intercept

- a
- An intercepted segment of a line
- The point at which a regression line intercepts the Y-axis

Slope

• b

- The inclination of a regression line as compared to a base line
- Rise over run
- D notation for "a change in"

The Least-Square Method

• Uses the criterion of attempting to make the least amount of total error in prediction of Y from X. More technically, the procedure used in the least-squares method generates a straight line that minimizes the sum of squared deviations of the actual values from this predicted regression line.

The Least-Square Method

• A relatively simple mathematical technique that ensures that the straight line will most closely represent the relationship between X and Y.

Regression - Least-Square Method

$$\begin{aligned} \boldsymbol{\mathcal{e}}_{i} &= \boldsymbol{Y}_{i} - \boldsymbol{\hat{Y}}_{i} \quad \text{(The "residual")} \\ \boldsymbol{Y}_{i} &= \text{actual value of the dependent variable} \\ \boldsymbol{\hat{Y}}_{i} &= \text{estimated value of the dependent variable (Y hat)} \\ \boldsymbol{n} &= \text{number of observations} \end{aligned}$$

i = number of the observation

The Logic behind the Least-Squares Technique

- No straight line can completely represent every dot in the scatter diagram
- There will be a discrepancy between most of the actual scores (each dot) and the predicted score
- Uses the criterion of attempting to make the least amount of total error in prediction of Y from X

 $\hat{\beta}$ = estimated slope of the line (the "regression coefficient")

- \hat{a} = estimated intercept of the y axis
- Y = dependent variable
- \overline{Y} = mean of the dependent variable
- X = independent variable
- \overline{X} = mean of the independent variable
- n = number of observations

$$\hat{\beta} = \frac{15(193,345) - 2,806,875}{15(245,759) - 3,515,625}$$
$$= \frac{2,900,175 - 2,806,875}{3,686,385 - 3,515,625}$$
$$= \frac{93,300}{170,760} = .54638$$

$$\hat{a} = 99.8 - .54638(125)$$

= 99.8 - 68.3
= 31.5

$$\hat{Y} = 31.5 + .546(X)$$

= 31.5 + .546(89)
= 31.5 + 48.6
= 80.1

$$\hat{Y} = 31.5 + .546(X)$$

= 31.5 + .546(89)
= 31.5 + 48.6
= 80.1

Dealer 7 (Actual Y value = 129)

$$\hat{Y}_7 = 31.5 + .546(165)$$

 $= 121.6$
Dealer 3 (Actual Y value = 80)
 $\hat{Y}_3 = 31.5 + .546(95)$
 $= 83.4$

$$e_i = Y_9 - \hat{Y}_9$$

= 97 - 96.5
= 0.5

Dealer 7 (Actual Y value = 129)

$$\hat{Y}_7 = 31.5 + .546(165)$$

 $= 121.6$
Dealer 3 (Actual Y value = 80)
 $\hat{Y}_3 = 31.5 + .546(95)$
 $= 83.4$

$$e_i = Y_9 - \hat{Y}_9$$

= 97 - 96.5
= 0.5

$\hat{Y}_9 = 31.5 + .546(119)$

F-Test (Regression)

- A procedure to determine whether there is more variability explained by the regression or unexplained by the regression.
- Analysis of variance summary table

Total Deviation can be Partitioned into Two Parts

- Total deviation equals
- Deviation explained by the regression plus
- Deviation unexplained by the regression

"We are always acting on what has just finished happening. It happened at least 1/30th of a second ago.We think we're in the present, but we aren't. The present we know is only a movie of the past." **Tom Wolfe** in *The Electric Kool-Aid Acid Test*

Partitioning the Variance

 $\left(Y_{i}-\overline{Y}\right)=\left(\hat{Y}_{i}-\overline{Y}\right)+\left(Y_{i}-\hat{Y}_{i}\right)$

Total deviation

Deviation= explained by the regression

+ Deviation unexplained by the regression (Residual error)

 \overline{Y} = Mean of the total group \hat{Y} = Value predicted with regression equation Y_i = Actual value

 $\sum \left(Y_i - \overline{Y}\right)^2 = \sum \left(\hat{Y}_i - \overline{Y}\right)^2 + \sum \left(Y_i - \hat{Y}_i\right)^2$

Total variation explained

= Explained variation

Unexplained + variation (residual)

Sum of Squares

SSt = SSr + SSe

Coefficient of Determination r²

- The proportion of variance in Y that is explained by X (or vice versa)
- A measure obtained by squaring the correlation coefficient; that proportion of the total variance of a variable that is accounted for by knowing the value of another variable

Source of Variation

- Explained by Regression
- Degrees of Freedom
 - k-1 where k= number of estimated constants (variables)
- Sum of Squares
 - SSr
- Mean Squared
 - SSr/k-1

Source of Variation

- Unexplained by Regression
- Degrees of Freedom
 n-k where n=number of observations
- Sum of Squares – SSe
- Mean Squared – SSe/n-k

r^2 in the Example

$$r^2 = \frac{3,398.49}{3,882.4} = .875$$

Multiple Regression

- Extension of Bivariate Regression
- Multidimensional when three or more variables are involved
- Simultaneously investigates the effect of two or more variables on a single dependent variable
- Discussed in Chapter 24

V Microsoft Excel _C	orrelation Regression Trade	Årea				
	oneration negression fraue					비비스
I	sert Format Loois Data win	oow Help				
🗅 📂 日 😂 🗳	🚏 👗 🖻 🖻 ダ 🌳 🕇	🗠 👻 🝓 😵 🛛 🌶	* 2+ X+ 🛄 朢	100% 🚽 🧏	1	
Arial	• 10 • B I U 🔳	≣ ≡ ■ \$ %	. <u>*.8 .08</u> 💷 💷	- 🖄 - <u>A</u>	•	
		CUExploring Marketing P	ecearchidata\8ed Evc		1	
			esearcintuacatoeu Exc	encon eladori kegi e p		
G25 🗾	=	D	F	-	<u> </u>	
1	U	U	E	F _	6	<u> </u>
2 MAJOR CITY		RETAIL SALES (000)				
3 Blountstown	13.017	\$108 126				
4 Apalachicola	11,057	\$95,332				
5 Quincy	45,087	\$266,399		POPULATION	RETAIL SALES	
6 Monticello	12,902	\$82,837	POPULATION	1		
7 Bristol	7,021	\$10,366	RETAIL SALES	0.846899978	1	
8 Madison	18,733	\$103,993				
9 Perry	19,256	\$129,649				
10 Crawfordville	22,863	\$100,849				
11 Quitman	16,450	\$50,529				
12 Bainbridge	28,240	\$302,444				
13 Cairo	23,659	\$166,420				
14 Thomasville	42,/3/	\$560,412				
15						
17						
18						
19						
20						
21					_	
	A SURROUNDING AREA (Regression output / Shee	t4 / Shee			
Draw 🔻 🔓 🙆 Auto	oShapes 🔻 🔪 🌂 🔲 🔿 🔮] 4 🔌 • 🚣 • 🚣	• = = 🗄 🗖			
Ready					CAPS NUM	

X	licrosoft Excel - Cor	relation Re	gression Tr	ade Area				- 2 2 5	107 🖬 💽 💶 🗗
	<u>File E</u> dit <u>V</u> iew Inse	ert F <u>o</u> rmat	<u>T</u> ools <u>D</u> ata	<u>W</u> indow <u>H</u> e	lp				_ 8
D	🖻 🖬 🎒 🖪 🤅	💱 🐰 🗈	🛍 🝼 🕛	0 * Cl *	🍓 🍣 🗴	$\Sigma f_* \stackrel{A}{\underset{Z}{\downarrow}} \stackrel{Z}{\underset{A}{\downarrow}}$	🛍 🔮 极 10	0% 💌 🧖	
Ari	Microsoft Excel - Correlation Regression Trade Area Image: Correlation Regression Trade Area Image: Correlation Regression Trade Area Image: Correlation Regression Trade Area Image: Correlation Regression Trade Area Image: Correlation Regression Trade Area Image: Correlation Regression Trade Area Image: Correlation Regression Trade Area Image: Correlation Regression Trade Area Image: Correlation Regression Regression Regression Regression Regression Regression Regression Statistics Image: Correlation Regression Statistics Image: Correlation Regression Statistics Image: Correlation Regression Statistics Image: Correlation Regression Statistics Image: Correlation Regression Statistics Image: Correlation Regression Statistics Image: Correlation Regression Statistics Image: Correlation Regression Statistics Image: Correlation Regression Statistics Image: Correlation Regression Statistics Image: Correlation Regression Statistics Image: Correlation Regression Statistics Image: Correlation Regression Statistics Image: Correlation Regression Statistics Image: Correlation Regression Statistics Image: Correlation Statistics Image: Correlation Regression Statistics Image: Correlation Regression Statistics Image: Correlation Statistics Image: Correlation Regression Statistics Image: Correlation Regression Statistics								
←	> 😢 🛃 🗂	🧿 Favorite	es • <u>G</u> o •	C:\Ex	ploring Marke	ting Research\data	\8ed Excel\Correla	tion Regre 🝷	
	J24 💌	=							
	A	В	С	D	E	F	G	Н	.
1	SUMMARY OUTPI	UT							
2									
3	Regression Sta	atistics							
4	Multiple R	0.8469							
5	R Square	0.71724							
6	Adjusted R Square	0.688964							
7	Standard Error	83481.02							
8	Observations	12							
9									
10	ANOVA								
11		df	SS	MS	F	Significance F			
12	Regression	1	1.77E+11	1.77E+11	25.36563	0.00050929			
13	Residual	10	6.97E+10	6.97E+09					
14	Total	11	2.46E+11						
15									
16	(Coefficients	tandard Err	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
17	Intercept	-66672	51890.89	-1.28485	0.227807	-182292.1167	48948.14378	-182292.1167	48948.14378
18	POPULATION	10.64056	2.112718	5.03643	0.000509	5.933127658	15.34798917	5.933127658	15.34798917
19									
20									
Î.	► ► TRADE AREA	/ SURROU	NDING AREA	Regressio	on output 🔬	Sheet4 / Shee	(Þ
Dr	aw 🗸 😓 🍪 🛛 Autos	Shapes 👻 🔨	$\mathbf{X} \square \subset$) 🔮 ᆀ	🕭 - 🏒 -	<u>A</u> - ≡ ≡ ₹	≓ 🖪 💣		
Rea	idy							CAP	S NUM

Correlation Coefficient, r = .75

	j <u>c</u> ie <u>E</u> ait <u>)</u>	//ew Insert Form /==2. □=3. ABC/ U	iat <u>T</u> oois D	ata <u>w</u> indow <u>H</u> ∢ ∽ ∽	ieip	1 - 1		1009/	<u>– 18</u>	
	🗁 🔚 6	≝ LQ. ♥ Å	48 E S	y ≌) + (×l +		ΣJ×	Żŧ Ăŧ 🛄 👻 🚸	100% • 👷		
Ari	ial	▼ 10 ▼	B Z	Ŭ Ē Ē Ē	1 1 1 1	%,	*:8 ;08 ∰ ∰ 🛄	• 🖄 • <u>A</u> •		
÷		🔁 🚮 🤕 Fav	/orites 👻 🚊	o 🔹 📑 🖓 C:\E:	xploring Mark	eting Res	earch\data\8ed Excel\Cor	relation Regre 🝷		
	I24	• =								
	A	B	С	D	E	F	G	Н	I	
1		Major League B	Baseball							
2								CORRELATION		
3										-
4	Year	Average Ticket	% change	Player Salary	% change			Average Ticket	Player Salary	4
5	1994	10.45		1,188,679			Average Ticket	1		
6	1995	10.65	1.9	1,071,029	-9.9		Player Salary	0.991610461	1	-
<u>_</u>	1996	11.2	5.1	1,176,967	9.9					
5	1997	12.36	10.4	1,383,578	17.6					
2	1990	13.59	10	1,441,406	4.2			V ChangeTieket	V Change Salan	
	2000	14.91	9.7 11 Q	1,720,050	19.3		% ChangeTicket	⁷⁰ Change Licket	70 Change Salary	y
2	2000	18.99	13.9	2 264 403	13.0		% Change Salary	0.750758207	1	
3	2001	10.00	10.0	2,204,400	10.0		in onlinge outery	0.100100201		
4										
5										
6										
7										
8										
19										
20										┼╸
		ADE AREA 🔏 SURF	ROUNDING A	REA 🖌 Rearess	ion output	baseba	all / She 📢			ιĒ
Dr	aw - 🕨 🖉	AutoShapes -			8 - A	- A -				
00	. w e	Hacobridges +			<u> </u>	· ·				
ea	ady							J.J.		