Research Methods

William G. Zikmund

Bivariate Analysis -
Tests of Differences

Common Bivariate Tests

Common Bivariate Tests

Common Bivariate Tests

Differences Between Groups

- Contingency Tables
- Cross-Tabulation
- Chi-Square allows testing for significant differences between groups
- "Goodness of Fit"

Chi-Square Test

$x^{2}=\sum \frac{\left(O_{\mathrm{i}}-E_{\mathrm{i}}\right)^{2}}{E_{\mathrm{i}}}$

$x^{2}=$ chi-square statistics
$\mathrm{O}_{\mathrm{i}}=$ observed frequency in the $i^{\text {th }}$ cell $\mathrm{E}_{\mathrm{i}}=$ expected frequency on the $i^{\text {th }}$ cell

Chi-Square Test

$R_{i} C$

 n

$R_{i}=$ total observed frequency in the $i^{\text {th }}$ row
$C_{\mathrm{j}}=$ total observed frequency in the $j^{\text {th }}$ column
$n=$ sample size

Degrees of Freedom

$$
(\mathrm{R}-1)(\mathrm{C}-1)=(2-1)(2-1)=1
$$

Health Economics Research Method 200

Degrees of Freedom d.f. $=(\mathrm{R}-1)(\mathrm{C}-1)$

Awareness of Tire Manufacturer's Brand

	Men	Women	Total
Aware	50	10	60
Unaware	$\underline{15}$	$\underline{25}$	$\underline{40}$
	$\boxed{65}$		100

Chi-Square Test: Differences Among Groups Example

$$
\begin{aligned}
X^{2}= & \frac{(50-39)^{2}}{39}+\frac{(10-21)^{2}}{21} \\
& +\frac{(15-26)^{2}}{26}+\frac{(25-14)^{2}}{14}
\end{aligned}
$$

$$
\begin{aligned}
& \chi^{2}=3.102+5.762+4.654+8.643= \\
& \chi^{2}=22.161
\end{aligned}
$$

$$
\begin{aligned}
& \text { d.f. }=(R-1)(C-1) \\
& \text { d.f. }=(2-1)(2-1)=1
\end{aligned}
$$

Differences Between Groups when Comparing Means

- Ratio scaled dependent variables
- t-test
- When groups are small
- When population standard deviation is unknown
- z-test
- When groups are large

Null Hypothesis About Mean
Differences Between Groups

$$
\begin{aligned}
& \mu_{1}-\mu_{2} \\
& O R \\
& \mu_{1}-\mu_{2}=0
\end{aligned}
$$

t -Test for Difference of Means

$$
\mathrm{t}=\frac{\text { mean } 1-\text { mean } 2}{\text { Variability of random means }}
$$

t-Test for Difference of Means

$$
t=\frac{\overline{\mathrm{X}}_{1}-\overline{\mathrm{X}}_{2}}{S_{\bar{X}_{1}-\bar{X}_{2}}}
$$

$\bar{X}_{1}=$ mean for Group 1
$\bar{X}_{2}=$ mean for Group 2
$\mathrm{S}_{\overline{\mathrm{X}}_{1}-\overline{\mathrm{X}}_{2}}=$ the pooled or combined standard error of difference between means.

t-Test for Difference of Means

t -Test for Difference of Means

$\bar{X}_{1}=$ mean for Group 1
$\bar{X}_{2}=$ mean for Group 2
$\mathrm{S}_{\bar{X}_{1}-\bar{X}_{2}}=$ the pooled or combined standard error of difference between means.

Pooled Estimate of the Standard Error

$$
S_{\bar{X}_{1}-\bar{X}_{2}}=\sqrt{\left(\frac{\left.\left(n_{1}-1\right) S_{1}^{2}+\left(n_{2}-1\right) S_{2}^{2}\right)}{n_{1}+n_{2}-2}\right)\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}
$$

Pooled Estimate of the Standard Error

$S_{1}{ }^{2}=$ the variance of Group 1
$S_{2}{ }^{2}=$ the variance of Group 2
$n_{1}=$ the sample size of Group 1
$n_{2}=$ the sample size of Group 2

Pooled Estimate of the Standard Error

 t-test for the Difference of Means$$
S_{\bar{X}_{1}-\bar{X}_{2}}=\sqrt{\left(\frac{\left.\left(n_{1}-1\right) S_{1}^{2}+\left(n_{2}-1\right) S_{2}^{2}\right)}{n_{1}+n_{2}-2}\right)\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}
$$

$S_{t}^{2}=$ the variance of Group 1
$S_{2}{ }^{2}=$ the variance of Group 2
$n_{1}=$ the sample size of Group 1
$n_{2}=$ the sample size of Group 2

Degrees of Freedom

- d.f. $=\mathrm{n}-\mathrm{k}$

- where:

$$
\begin{aligned}
& -\mathrm{n}=\mathrm{n}_{1+} \mathrm{n}_{2} \\
& -\mathrm{k}=\text { number of groups }
\end{aligned}
$$

t -Test for Difference of Means Example

$$
\begin{aligned}
S_{\bar{X}_{1}-\bar{X}_{2}} & =\sqrt{\left(\frac{(20)(2.1)^{2}+(13)(2.6)^{2}}{33}\right)\left(\frac{1}{21}+\frac{1}{14}\right)} \\
& =.797
\end{aligned}
$$

$$
\begin{aligned}
t & =\frac{16.5-12.2}{.797}=\frac{4.3}{.797} \\
& =5.395
\end{aligned}
$$

Comparing Two Groups when Comparing Proportions

- Percentage Comparisons
- Sample Proportion - P
- Population Proportion - Π

Differences Between Two Groups when Comparing Proportions

The hypothesis is:

$$
\mathrm{H}_{\mathrm{o}}: \Pi_{1}=\Pi_{2}
$$

may be restated as:

$$
\mathrm{H}_{\mathrm{o}}: \Pi_{1}-\Pi_{2}=0
$$

Z-Test for Differences of Proportions

$$
H_{o}: \pi_{1}=\pi_{2}
$$

or

$$
H_{o}: \pi_{1}-\pi_{2}=0
$$

Z-Test for Differences of Proportions

$$
Z=\frac{\left(p_{1}-p_{2}\right)-\left(\pi_{1}-\pi_{2}\right)}{S_{p_{1}-p_{2}}}
$$

Z-Test for Differences of Proportions

$p_{1}=$ sample portion of successes in Group 1
$p_{2}=$ sample portion of successes in Group 2
$\left(\pi_{l}-\pi_{l}\right)=$ hypothesized population proportion 1 minus hypothesized population proportion 1 minus
$S_{p 1-p 2}=$ pooled estimate of the standard errors of difference of proportions

Z-Test for Differences of Proportions

Z-Test for Differences of Proportions

$\bar{p}=$ pooled estimate of proportion of success in a sample of both groups
$\bar{q}=(1-\bar{p})$ or a pooled estimate of proportion of failures in a sample of both groups
$n_{1}=$ sample size for group 1
$\mathrm{n}_{2}=$ sample size for group 2

Z-Test for Differences of Proportions

$$
\bar{p}=\frac{n_{1} p_{1}+n_{2} p_{2}}{n_{1}+n_{2}}
$$

Z-Test for Differences of Proportions

$$
\begin{aligned}
S_{p_{1}-p_{2}} & =\sqrt{(.375)(.625)\left(\frac{1}{100}+\frac{1}{100}\right)} \\
& =.068
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{c}
\text { A Z-Test for Differences of } \\
\text { Proportions }
\end{array} \\
\bar{p} & =\frac{(100)(.35)+(100)(.4)}{100+100} \\
& =.375
\end{aligned}
$$

Analysis of Variance

Hypothesis when comparing three groups
$\mu_{1}=\mu_{2}=\mu_{3}$

Analysis of Variance F-Ratio

$$
F=\frac{\text { Variance }- \text { between }- \text { groups }}{\text { Variance }- \text { within }- \text { groups }}
$$

Analysis of Variance Sum of Squares

$\mathrm{SS}_{\text {total }}=\mathrm{SS}_{\text {within }}+\mathrm{SS}_{\text {between }}$

Analysis of Variance Sum of SquaresTotal

SS
 ${ }_{\text {total }}=$
 $\sum_{i=1}^{n} \sum_{j=1}^{c}$
 $\left(X_{i j}-\overline{\bar{X}}\right)^{2}$

Analysis of Variance Sum of Squares

$X_{i j}=$ individual scores, i.e., the $i^{\text {th }}$ observation or test unit in the $j^{\text {th }}$ group
$\overline{\overline{\boldsymbol{X}}}=$ grand mean
$n=$ number of all observations or test units in a group
$c=$ number of $j^{\text {th }}$ groups (or columns)

Analysis of Variance Sum of SquaresWithin

$\mathrm{SS}_{\text {within }}=\sum_{i=1} \sum_{j=1}\left(X_{i j}-\bar{X}_{j}\right)^{2}$

Analysis of Variance Sum of SquaresWithin

$\boldsymbol{X}_{i j}=$ individual scores, i.e., the $i^{\text {th }}$ observation or test unit in the $j^{\text {th }}$ group
$\overline{\bar{X}}=$ grand mean
$n=$ number of all observations or test units in a group
$c=$ number of $j^{\text {th }}$ groups (or columns)

Analysis of Variance Sum of Squares Between
 $$
\mathrm{SS}_{\text {between }}=\sum_{j=1}^{n} n_{j}\left(\overline{\boldsymbol{X}}_{j}-\overline{\overline{\boldsymbol{X}}}\right)^{2}
$$

Analysis of Variance Sum of squares Between

$X_{\dot{j}}=$ individual scores, i.e., the $i^{\text {th }}$ observation or test unit in the $j^{\text {th }}$ group
$\overline{\bar{X}}=$ grand mean
$\begin{aligned} n_{j}= & \text { number of all observations or test units in a } \\ & \text { group }\end{aligned}$

Analysis of Variance Mean Squares Between

$M S$ between $=\frac{S S_{\text {between }}}{c-1}$

Analysis of Variance Mean Square Within

$c n-c$

Analysis of Variance F-Ratio

$F=\frac{M S_{\text {between }}}{M S_{\text {within }}}$

A Test Market Experiment on Pricing
 Sales in Units (thousands)

	Regular Price $\$.99$	Reduced Price $\$.89$	Cents-Off Coupon Regular Price
Test Market A, B, or C	130	145	153
Test Market D, E, or F	118	143	129
Test Market G, H, or I	87	120	96
Test Market J, K, or L	84	131	99
Mean		$X_{2}=134.75$	$X_{1}=119.25$
Grand Mean	$X_{1}=104.75$		

ANOVA Summary Table Source of Variation

- Between groups
- Sum of squares
- SSbetween
- Degrees of freedom
- c-1 where c=number of groups
- Mean squared-MSbetween
- SSbetween/c-1

ANOVA Summary Table Source of Variation

- Within groups
- Sum of squares
- SSwithin
- Degrees of freedom
- cn -c where $\mathrm{c}=$ number of groups, $\mathrm{n}=$ number of observations in a group
- Mean squared-MSwithin
- SSwithin/cn-c

ANOVA Summary Table Source of Variation

- Total
- Sum of Squares
- SStotal
- Degrees of Freedom
- cn -1 where $\mathrm{c}=$ number of groups, $\mathrm{n}=$ number of observations in a group
$F=\frac{M S_{\text {BETWEEN }}}{M S_{\text {WITHIN }}}$

Research Methods

William G. Zikmund

Bivariate Analysis: Measures of Associations

Measures of Association

- A general term that refers to a number of bivariate statistical techniques used to measure the strength of a relationship between two variables.

Relationships Among Variables

- Correlation analysis
- Bivariate regression analysis

Correlation Coefficient

- A statistical measure of the covariation or association between two variables.
- Are dollar sales associated with advertising dollar expenditures?

The Correlation coefficient for two variables, X and Y is rxy

Correlation Coefficient

- r
- r ranges from +1 to -1
- $\mathrm{r}=+1$ a perfect positive linear relationship
- $r=-1$ a perfect negative linear relationship
- $\mathrm{r}=0$ indicates no correlation

Simple Correlation Coefficient

$$
r_{x y}=r_{y x}=\frac{\sum\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)}{\sqrt{\sum(X i-\bar{X})^{2} \sum(Y i-\bar{Y})^{2}}}
$$

Simple Correlation Coefficient

$$
r_{x y}=r_{y x}=\frac{\sigma_{x y}}{\sqrt{\sigma_{x}^{2} \sigma_{y}^{2}}}
$$

Simple Correlation Coefficient Alternative Method

$$
\begin{aligned}
\sigma_{x}^{2} & =\text { Variance of } \mathrm{X} \\
\sigma_{y}^{2} & =\text { Variance of } \mathrm{Y} \\
\sigma_{x y} & =\text { Covariance of } \mathrm{X} \text { and } \mathrm{Y}
\end{aligned}
$$

Correlation Patterns

Calculation of r

$$
\begin{aligned}
r & =\frac{-6.3389}{\sqrt{(17.837)(5.589)}} \\
& =\frac{-6.3389}{\sqrt{99.712}} \quad=-.635
\end{aligned}
$$

Coefficient of Determination

$r^{2}=\underline{\text { Explained variance }}$ Total Variance

Correlation Does Not Mean Causation

- High correlation

- Rooster's crow and the rising of the sun
- Rooster does not cause the sun to rise.
- Teachers' salaries and the consumption of liquor
- Covary because they are both influenced by a third variable

Correlation Matrix

- The standard form for reporting correlational results.

Correlation Matrix

Var1 Var2 Var3

Var1
1.0
0.45
0.31

Var2
0.45
1.0
0.10

Var3
0.31
0.10
1.0

Walkup's
 First Laws of Statistics

- Law No. 1
- Everything correlates with everything, especially when the same individual defines the variables to be correlated.
- Law No. 2
- It won't help very much to find a good correlation between the variable you are interested in and some other variable that you don't understand any better.

Walkup's

First Laws of Statistics

- Law No. 3
- Unless you can think of a logical reason why two variables should be connected as cause and effect, it doesn't help much to find a correlation between them. In Columbus, Ohio, the mean monthly rainfall correlates very nicely with the number of letters in the names of the months!

Regression

DICTIONARY DEFINITION

GOING OR MOVING BACKWARD

Going back to previous conditions

- Tall men's sons

Bivariate Regression

- A measure of linear association that investigates a straight line relationship
- Useful in forecasting

Bivariate Linear Regression

- A measure of linear association that investigates a straight-line relationship
- $Y=a+b X$
- where
- Y is the dependent variable
- X is the independent variable
- a and b are two constants to be estimated

Y intercept

- a
- An intercepted segment of a line
- The point at which a regression line intercepts the Y-axis

Slope

- b
- The inclination of a regression line as compared to a base line
- Rise over run
- D - notation for "a change in"

Regression Line and Slope

Health Economics Research Method 2003/2.

Scatter Diagram of Explained

 and Unexplained Variation

Health Economics Research Method 2003/2.

The Least-Square Method

- Uses the criterion of attempting to make the least amount of total error in prediction of Y from X. More technically, the procedure used in the least-squares method generates a straight line that minimizes the sum of squared deviations of the actual values from this predicted regression line.

The Least-Square Method

- A relatively simple mathematical technique that ensures that the straight line will most closely represent the relationship between X and Y.

Regression - Least-Square Method

$e_{i}=Y_{i}-\hat{Y}_{i} \quad$ (The "residual")
$Y_{i}=$ actual value of the dependent variable
$\hat{Y}_{i}=$ estimated value of the dependent variable (Y hat)
$\mathrm{n}=$ number of observations
$\mathrm{i}=$ number of the observation

The Logic behind the LeastSquares Technique

- No straight line can completely represent every dot in the scatter diagram
- There will be a discrepancy between most of the actual scores (each dot) and the predicted score
- Uses the criterion of attempting to make the least amount of total error in prediction of Y from X

Bivariate Regression

$$
\hat{a}=\bar{Y}-\hat{\beta} \bar{X}
$$

Bivariate Regression

$$
\hat{\beta}=\frac{n\left(\sum X Y\right)-\left(\sum X\right)\left(\sum Y\right)}{n\left(\sum X^{2}\right)-\left(\sum X\right)^{2}}
$$

$\hat{\beta}=$ estimated slope of the line (the "regression coefficient")
$\hat{a}=$ estimated intercept of the y axis
$Y=$ dependent variable
$\bar{Y}=$ mean of the dependent variable
$X=$ independent variable
$\bar{X}=$ mean of the independent variable
$n=$ number of observations

$$
\begin{aligned}
\hat{\beta} & =\frac{15(193,345)-2,806,875}{15(245,759)-3,515,625} \\
& =\frac{2,900,175-2,806,875}{3,686,385-3,515,625} \\
& =\frac{93,300}{170,760}=.54638
\end{aligned}
$$

$$
\begin{aligned}
\hat{a} & =99.8-.54638(125) \\
& =99.8-68.3 \\
& =31.5
\end{aligned}
$$

$$
\begin{aligned}
\hat{a} & =99.8-.54638(125) \\
& =99.8-68.3 \\
& =31.5
\end{aligned}
$$

$$
\begin{aligned}
\hat{Y} & =31.5+.546(X) \\
& =31.5+.546(89) \\
& =31.5+48.6 \\
& =80.1
\end{aligned}
$$

$$
\begin{aligned}
\hat{Y} & =31.5+.546(X) \\
& =31.5+.546(89) \\
& =31.5+48.6 \\
& =80.1
\end{aligned}
$$

Dealer $7($ Actual Y value $=129)$

$$
\begin{aligned}
\hat{Y}_{7} & =31.5+.546(165) \\
& =121.6
\end{aligned}
$$

Dealer $3($ Actual Y value $=80)$

$$
\begin{aligned}
\hat{Y}_{3} & =31.5+.546(95) \\
& =83.4
\end{aligned}
$$

$$
\begin{aligned}
e_{i} & =Y_{9}-\hat{Y}_{9} \\
& =97-96.5 \\
& =0.5
\end{aligned}
$$

Dealer $7($ Actual Y value $=129)$

$$
\begin{aligned}
\hat{Y}_{7} & =31.5+.546(165) \\
& =121.6
\end{aligned}
$$

Dealer $3($ Actual Y value $=80)$

$$
\begin{aligned}
\hat{Y}_{3} & =31.5+.546(95) \\
& =83.4
\end{aligned}
$$

$$
\begin{aligned}
e_{i} & =Y_{9}-\hat{Y}_{9} \\
& =97-96.5 \\
& =0.5
\end{aligned}
$$

$\hat{Y}_{9}=31.5+.546(119)$

F-Test (Regression)

- A procedure to determine whether there is more variability explained by the regression or unexplained by the regression.
- Analysis of variance summary table

Total Deviation can be Partitioned into Two Parts

- Total deviation equals
- Deviation explained by the regression plus
- Deviation unexplained by the regression
"We are always acting on what has just finished happening. It happened at least $1 / 30$ th of a second ago. We think we're in the present, but we aren't. The present we know is only a movie of the past." Tom Wolfe in
The Electric Kool-Aid Acid Test

Partitioning the Variance

$$
\left(Y_{i}-\bar{Y}\right)=\left(\hat{Y}_{i}-\bar{Y}\right)+\left(Y_{i}-\hat{Y}_{i}\right)
$$

Total
deviation
:---
explained by the
regression
:---
unexplained by
the regression
(Residual
error)

$\bar{Y}=$ Mean of the total group
$\hat{Y}=$ Value predicted with regression equation
$Y_{i}=$ Actual value

$\begin{aligned} & \text { Total } \\ & \text { variation } \\ & \text { explained }\end{aligned}=\begin{aligned} & \text { Explained } \\ & \text { variation }\end{aligned}+\begin{aligned} & \text { Unexplained } \\ & \text { variation } \\ & \text { (residual) }\end{aligned}$

Sum of Squares

$$
S S t=S S r+S S e
$$

Coefficient of Determination

r^{2}

- The proportion of variance in Y that is explained by X (or vice versa)
- A measure obtained by squaring the correlation coefficient; that proportion of the total variance of a variable that is accounted for by knowing the value of another variable

$$
\begin{aligned}
& \text { Coefficient of Determination } \\
& r^{2}=\frac{S S r}{S S t}=1-\frac{S S e}{S S t}
\end{aligned}
$$

Source of Variation

- Explained by Regression
- Degrees of Freedom
- $\mathrm{k}-1$ where $\mathrm{k}=$ number of estimated constants (variables)
- Sum of Squares
- SSr
- Mean Squared
- SSr/k-1

Source of Variation

- Unexplained by Regression
- Degrees of Freedom
- n-k where n=number of observations
- Sum of Squares
- SSe
- Mean Squared
- SSe/n-k

r^{2} in the Example

$$
r^{2}=\frac{3,398.49}{3,882.4}=.875
$$

Multiple Regression

- Extension of Bivariate Regression
- Multidimensional when three or more variables are involved
- Simultaneously investigates the effect of two or more variables on a single dependent variable
- Discussed in Chapter 24

Kill Eile Edit Yiew Insert Format Iools Data Window Help

	B	c	D	E	F	G	
1							
2	MAJOR CITY	POPULATION	RETAIL SALES（000）				
3	Blountstown	13，017	\＄108，126				
4	Apalachicola	11，057	\＄95，332				
5	Quincy	45，087	\＄266，399		POPULATION	RETAIL SALES	
6	Monticello	12，902	\＄82，837	POPULATION	1		
7	Bristol	7，021	\＄10，366	RETAIL SALES	0.846899978	1	
8	Madison	18，733	\＄103，993				
9	Perry	19，256	\＄129，649				
10	Crawfordville	22，863	\＄100，849				
11	Quitman	16，450	\＄50，529				
12	Bainbridge	28，240	\＄302，444				
13	Cairo	23，659	\＄166，420				
14	Thomasville	42，737	\＄560，412				
15							
16							
17							
18							
19							
20							
21							
114	－$\$ TRADE & RROUNDING AREA／R & Regression output $/$ Shee	4 ／Shee 14			，｜1		
Ready				\square		CAPS NUM \square－	

Х Microsoft Excel－Correlation Regression Trade Area							國运	W｜果图	－可区
\＄3］Eile Edit view Insert Format Iools Data window Help									－可区
Arial									
$324 \quad \square$	＝								
A	B	C	D	E	F	G	H	1	$\sqrt{4}$
1 SUMMARY OUTPUT									
2									
3 Regression Sta	tatistics								
4 Multiple R	0.8469								
5 R Square	0.71724								
6 Adjusted R Square	\＆ 0.688964								
7 Standard Error	83481.02								
8 Observations	12								
9									
10 ANOVA									
11	df	SS	MS	F	Significance F				
12 Regression	1	$1.77 \mathrm{E}+11$	1．77E＋11	25.36563	0.00050929				
13 Residual	10	$6.97 \mathrm{E}+10$	6．97E＋09						
14 Total	11	$2.46 \mathrm{E}+11$							
15									
16	Coefficients	tandard Em	t Stat	P－value	Lower 95\％	Upper 95\％	Lower 95．0\％	Upper 95．0\％	
17 Intercept	－66672	51890.89	－1．28485	0.227807	－182292．1167	48948.14378	－182292．116	48948.14378	
18 POPULATION	10.64056	2.112718	5.03643	0.000509	5.933127658	15.34798917	5.93312765	15.34798917	
19									－
20									
11 1 TRADE AREA／SURROUNDING AREA λ Regression output／Sheet4／Shee \｜\｜－｜									
Ready							CA	SS NUM	

Correlation Coefficient, $\mathrm{r}=.75$

