Research Methods

William G. Zikmund

Multivariate Analysis

Multivariate Statistical Analysis

• Statistical methods that allow the simultaneous investigation of more than two variables

A Classification of Selected Multivariate Methods

Dependence Methods

• A category of multivariate statistical techniques; dependence methods explain or predict a dependent variable(s) on the basis of two or more independent variables

Interdependence Methods

• A category of multivariate statistical techniques; interdependence methods give meaning to a set of variables or seek to group things together

Multiple Regression

- An extension of bivariate regression
- Allows for the simultaneous investigation
 - two or more independent variables
 - a single interval-scaled dependent variable

Multiple Regression Equation

 $Y = a + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 \dots + \beta_n X_n$

Multiple Regression Analysis

$Y = a + \beta_1 X_1 + \beta_2 X_2$ $+ \beta_3 X_3 + \dots + \beta_n X_n$

Coefficients of Partial Regression

β_1

Independent variables correlated with one another

The % of the variance in the dependent variable that is explained by a single independent variable, holding other independent variables constant

Coefficient of Multiple Determination

- R²
- The % of the variance in the dependent variable that is explained by the variation in the independent variables.

Statistical Results of a Multiple Regression

- $Y = 102.18 + .387X_1 + 115.2X_2 + 6.73X_3$
- Coefficient of multiple determination (R²) .845
- F-value 14.6

Degrees of Freedom

- k = number of independent variables
- n = number of observations or respondents

F-test

$$F = \frac{(SSr)/k}{(SSe)/(n-k-1)}$$

where

k = number of independent variables

n = number of observations

Multiple Discriminant Analysis

A statistical technique for predicting the probability of objects belonging in two or more mutually exclusive categories (dependent variable) based on several independent variables

 $Z_i = b_1 X_{1i} + b_2 X_{2i} + \ldots + b_n X_{ni}$

- where
- Z_i = ith applicant's discriminant score
- b_n = discriminant coefficient for the nth variable
- X_{ni} = applicant's value on the nth independent variable

Discriminant Analysis

 $Z_i = b_1 X_{1i} + b_2 X_{2i}$ $+\ldots+b_n X_{ni}$

Discriminant Analysis

$$X_{ji}$$
 = applicant's value on the jth independent variable

$$b_j$$
 = discriminant coefficient for the j^{th} variable

$$Z_i = i^{\text{th}}$$
 applicant's discriminant score

Canonical Correlation

- Two or more criterion variables (dependent variables)
- Multiple predictor variables (independent variables)
- An extension of multiple regression
- Linear association between two sets of variables

Canonical Correlation

•
$$Z = a_1 X_1 + a_2 X_2 + \ldots + a_n X_n$$

• W = $b_1 Y_1 + b_2 Y_2 + \ldots + b_n Y_n$

Factor Analysis

- Summarize the information in a large number of variables
- Into a smaller number of factors
- Several factor-analytical techniques

Factor Analysis

• A type of analysis used to discern the underlying dimensions or regularity in phenomena. Its general purpose is to summarize the information contained in a large number of variables into a smaller number of factors.

Cluster Analysis

• A body of techniques with the purpose of classifying individuals or objects into a small number of mutually exclusive groups, ensuring that there will be as much likeness within groups and as much difference among groups as possible

Multidimensional Scaling

• A statistical technique that measures objects in multidimensional space on the basis of respondents' judgments of the similarity of objects

Multivariate Analysis of Variance (MANOVA)

• A statistical technique that provides a simultaneous significance test of mean difference between groups for two or more dependent variables