Choice Models

(c) Pongsa Pornchaiwiseskul, Faculty of Economics, Chulalongkorn University

Covered Topics

- Binary Choice
 - -LPM
 - -logit
 - -logistic regresion
 - -probit
- Multiple Choice
 - -Multinomial Logit

Binary Choice

- Yes or No
- Buy or Not Buy
- Join or Not Join
- Own or Not Own
- Switch or Stay

(c) Pongsa Pornchaiwiseskul, Faculty of Economics, Chulalongkorn University

Multiple Choice

- Yes, No, Abstain
- Buy, Sell or No Action
- Buy Brand A, B, C or None
- Join Plan X, Y or Z

(c) Pongsa Pornchaiwiseskul, Faculty of Economics, Chulalongkorn University 4

Mutual Exclusiveness

Note that all the choices must be mutually exclusive and exhaustive. One and only one choice or event will occur.

> (c) Pongsa Pornchaiwiseskul, Faculty of Economics, Chulalongkorn University

Choice Model (1)

Ouestion: What determines the choice selection?

Model to determine the probability of an event under a given condition (value of independent variables)

$$Pr(\text{choice}\#j) = F_j(X_1, X_2, \dots, X_K)$$

where X's are determinants for the probability.

(c) Pongsa Pornchaiwiseskul, Faculty of Economics,

Chulalongkorn University

Choice Model (2)

Note that

- 1) $\sum \Pr(\text{choice} \# j) = 1$
- 2) function F_j () must return a value between 0 and 1

(c) Pongsa Pornchaiwiseskul, Faculty of Economics, Chulalongkorn University

Quantification of Binary Choices

Example

JOIN=1 if the observation will join the government-run health insurance program

= 0, otherwise

Quantification of Multiple Choices

JA=1 if the observation will join Plan A

= 0, otherwise

JB=1 if the observation will join Plan B

= 0, otherwise

JC=1 if the observation will join Plan C

= 0, otherwise

Note that JA+JB+JC=1 always.

(c) Pongsa Pornchaiwiseskul, Faculty of Economics, Chulalongkorn University 9

Binary Choice Model

General Structure

$$Pr(JOIN = 1) = F(X_1, X_2, ..., X_K)$$

$$Pr(JOIN = 0) = 1 - F(X_1, X_2, ..., X_K)$$

Note that

$$0 \le F(X_1, X_2, ..., X_K) \le 1$$

Linear Probability Model (1)

Define
$$P = Pr(JOIN = 1)$$

Assumption of LPM

Linearity of F(.)

$$P = \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_K X_K$$

Note that there is no error term

(c) Pongsa Pornchaiwiseskul, Faculty of Economics, Chulalongkorn University 11

Linear Probability Model (2)

Formulation of LPM

$$E(JOIN)=(1)P+(0)(1-P)=P$$

$$==> JOIN=P+v$$

where v is an error term. E(v)=0

$$JOIN = \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_K X_K + v \quad \dots (1)$$

=> OLS is valid but not the best. Why?

Linear Probability Model (3)

Note that

$$V(V) = V(JOIN)$$
 but
 $V(JOIN) = (1-P)^2P + (0-P)^2(1-P)$
 $= P(1-P)$

==> V(V) is not constant. It depends on the independent variables (X's)

==> Violation of a CLRM assumption or ν is heteroscedastic

(c) Pongsa Pornchaiwiseskul, Faculty of Economics, Chulalongkorn University 13

Linear Probability Model (4)

Define
$$w = \sqrt{\frac{1}{P(1-P)}}$$
$$JOIN^* = \beta_1 X_1^* + \beta_2 X_2^*$$

$$JOIN = \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_K X_K^* + \nu^* - \dots (2)$$

where
$$JOIN^* = wJOIN$$

$$X_{k}^{*} = wX_{k}$$
 for $k = 1,..., K$

$$v^* = wv$$

(c) Pongsa Pornchaiwiseskul, Faculty of Economics, Chulalongkorn University 14

Linear Probability Model (5)

Note that

$$V(\nu^*) = w^2 V(\nu)$$

$$= \frac{1}{P(1-P)} P(1-P)$$

$$= 1$$

==> OLS is BLUE for Model (2)

(c) Pongsa Pornchaiwiseskul, Faculty of Economics, Chulalongkorn University 1:

Linear Probability Model (6)

Estimation of LPM

Step 1 run OLS for unweighted model (1)

$$==>\widehat{JOIN}=X\widehat{\beta}$$

Note that \widehat{JOIN} is the estimate for P

Linear Probability Model (7)

Step 2 compute the weight

$$w = \sqrt{\frac{1}{\widehat{JOIN}(1 - \widehat{JOIN})}}$$

Step 3 compute $JOIN^*, X_1^*, X_2^*, ..., X_K^*$

Step 4 estimate the weighted model (2) using OLS

(c) Pongsa Pornchaiwiseskul, Faculty of Economics, Chulalongkorn University 1

Linear Probability Model (8)

Step 5 re-compute \widehat{JOIN} using the new set of $\widehat{\beta}$.

Note that LPM does not assure that

$$0 \le \widehat{JOIN} \le 1$$

or $0 \le F(X_1, X_2, ..., X_K) \le 1$

(c) Pongsa Pornchaiwiseskul, Faculty of Economics, Chulalongkorn University

Linear Probability Model (9)

Correction

If
$$X\beta < 0$$
, set $\widehat{JOIN} = 0$

If
$$X \beta > 1$$
, set $\widehat{JOIN} = 1$

(c) Pongsa Pornchaiwiseskul, Faculty of Economics, Chulalongkorn University

19

Linear Probability Model (10)

Linear Probability Model (11)

- Less expensive in computer time. No non-linear equations
- $\frac{\partial P}{\partial X_k} = \beta_k$ is the effect of X on the probability. In general, the explanatory variables should be unitless or are expressed in percentage

(c) Pongsa Pornchaiwiseskul, Faculty of Economics, Chulalongkorn University

Logit Model (1)

Assumption of Logit

F() is a logistic function No error term $P = \frac{1}{1 + \rho^{-Z}}$ $Z = \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_K X_K$

Note that $0 \le F(Z) \le 1$ always.

Logit Model (2)

(c) Pongsa Pornchaiwiseskul, Faculty of Economics, Chulalongkorn University 23

Logit Model (3)

Note that OLS does not apply

ML Estimation of Logit model

$$\max_{\beta} L = \prod_{i=1}^{n} (P_i)^{Y_i} (1 - P_i)^{(1 - Y_i)}$$

or
$$\max_{\beta} \ln L = \sum_{i=1}^{n} [Y_i \ln(P_i) + (1 - Y_i) \ln(1 - P_i)]$$

Note that Y=JOIN

Logit Model (4)

Note that
$$1 - P = \frac{1}{1 + e^Z}$$

First-order conditions

For
$$k=1,...,K$$

$$\frac{\partial \ln L}{\partial \beta_k} = \sum_{i=1}^n \left[X_{ki} Y_i \frac{e^{-Z_i}}{1 + e^{-Z_i}} \right] - \sum_{i=1}^n \left[X_{ki} (1 - Y_i) \frac{e^{Z_i}}{1 + e^{Z_i}} \right] = 0$$

(c) Pongsa Pornchaiwiseskul, Faculty of Economics, Chulalongkorn University 25

Logit Model (5)

Solving FOC for ML estimates.

Second-order Conditions

$$\frac{\partial^{2} \ln L}{\partial \beta_{j} \partial \beta_{k}} = -\sum_{i=1}^{n} \left[X_{ji} X_{ki} Y_{i} \frac{e^{Z_{i}}}{(1 + e^{Z_{i}})^{2}} \right] - \sum_{i=1}^{n} \left[X_{ji} X_{ki} (1 - Y_{i}) \frac{e^{-Z_{i}}}{(1 + e^{-Z_{i}})^{2}} \right]$$

yields Variance-covariance matrix of $\hat{\beta}$

Logit Model (6)

Variance-Covariance Matrix for $\hat{\beta}$

$$V(\hat{\beta}) = \left[-\frac{\partial^2 \ln L}{\partial \beta_j \partial \beta_k} \right]^{-1}$$

Note that it is not the estimated VC matrix.

Do Z-test or Chi-square test instead of ttest or F-test on parameters

(c) Pongsa Pornchaiwiseskul, Faculty of Economics, Chulalongkorn University 2

Logit Model (7)

Interpretation

$$\frac{\partial P}{\partial X_k} = \frac{e^{-Z_i}}{(1 + e^{-Z_i})^2} \beta_k = \{+\} \beta_k$$

sign of $\beta_k ==>$ direction of the effect of X_k on the probability to JOIN.

Logit Model (8)

No R² for a logit model since there is no error term.

Define $pseudo - R^2 = \frac{\# \text{ correct prediction}}{\text{sample size (n)}}$ It is a measure for goodness-of-fit.

JOIN>0.5 ==> predict that JOIN=1

JOIN<0.5 ==> predict that JOIN=0

(c) Pongsa Pornchaiwiseskul, Faculty of Economics, Chulalongkorn University 29

Logistic Regression (1)

Assumption of Logistic Regression

F(.) is a logistic function but the observation(experiment) for each given set of independent variables(X) will be repeated several times.Only the proportion of JOIN=1 can be observed.

Logistic Regression (2)

From Logit Model

$$\ln\left(\frac{P}{1-P}\right) = \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_K X_K$$

Note that P is the expected proportion of population **JOIN**ing given X's

(c) Pongsa Pornchaiwiseskul, Faculty of Economics, Chulalongkorn University 3

Logistic Regression (3)

Define

 R_i =observed proportion of observation with the same value of X_i that **JOIN**.

Derived Model

$$\ln\left(\frac{R_{i}}{1-R_{i}}\right) = \beta_{1}X_{1i} + \beta_{2}X_{2i} + \dots + \beta_{K}X_{Ki} + \nu_{i}$$

$$V(\nu_{i}) = \frac{1}{N_{i}R_{i}(1-R_{i})} \quad \text{Why?}$$

(c) Pongsa Pornchaiwiseskul, Faculty of Economics, Chulalongkorn University 32

Logistic Regression (4)

Define
$$w = \sqrt{N_i R_i (1 - R_i)}$$

Estimation

$$R_{i}^{*} = \beta_{1}X_{1i}^{*} + \beta_{2}X_{2i}^{*} + \beta_{K}X_{Ki}^{*} + V_{i}^{*}$$
where
$$R_{i}^{*} = w_{i} \ln \left(\frac{R_{i}}{1 - R_{i}}\right)$$

$$X_{ki}^{*} = w_{i}X_{ki} \text{ for } k = 1,..., K$$

$$V_{i}^{*} = w_{i}V_{i}$$

Logistic Regression (5)

=> OLS is BLUE

Interpretation of the parameters same as those for logit model as the underlying function is also logistic

Probit Model (1)

Assumption of Probit

F() is a cumulative distribution No error term function of a standard normal.

$$P = \Phi(Z)$$

$$Z = \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_K X_K$$

Note that $0 \le \Phi(Z) \le 1$ always.

(c) Pongsa Pornchaiwiseskul, Faculty of Economics, Chulalongkorn University 3:

Probit Model (2)

Multinomial Logit Model (1)

Assumption of Multinomial Logit

Define
$$PA_i = Pr(JA_i=1)$$

 $PB_i = Pr(JB_i=1)$
 $PC_i = Pr(JC_i=1)$

Choose the choice of plan C as the reference.

(c) Pongsa Pornchaiwiseskul, Faculty of Economics, Chulalongkorn University 3

Multinomial Logit Model (2)

where
$$ZA_i = e^{ZA_i}$$

$$\frac{PA_i}{PC_i} = e^{ZA_i}$$

$$ZA_i = \alpha_1 X_{1i} + \alpha_2 X_{2i} + \dots + \alpha_K X_{Ki}$$

$$\frac{PB_i}{PC_i} = e^{ZB_i}$$
where $ZB_i = \beta_1 X_{1i} + \beta_2 X_{2i} + \dots + \beta_K X_{Ki}$

Multinomial Logit Model (3)

$$\frac{PA_{i} + PB_{i}}{PC_{i}} = e^{ZA_{i}} + e^{ZB_{i}}$$

$$1 + \frac{PA_{i} + PB_{i}}{PC_{i}} = 1 + e^{ZA_{i}} + e^{ZB_{i}}$$

$$PC_{i} = \frac{1}{1 + e^{ZA_{i}} + e^{ZB_{i}}}$$

(c) Pongsa Pornchaiwiseskul, Faculty of Economics, Chulalongkorn University 39

Multinomial Logit Model (4)

$$PA_{i} = \frac{e^{ZA_{i}}}{1 + e^{ZA_{i}} + e^{ZB_{i}}}$$

$$PB_{i} = \frac{e^{ZB_{i}}}{1 + e^{ZA_{i}} + e^{ZB_{i}}}$$

Multinomial Logit Model (5)

ML Estimation of Multinomial Logit model

$$\max_{\beta} L = \prod_{i=1}^{n} (PA_i)^{JA_i} (PB_i)^{JB_i} (1 - PA_i - PB_i)^{(1 - JA_i - JB_i)}$$

or
$$\max_{\beta} \ln L = \sum_{i=1}^{n} [JA_i \ln(PA_i) + JB_i \ln(PB_i) + (1 - JA_i - JB_i) \ln(1 - PA_i - PB_i)]$$

Solving FOC yields $\hat{\alpha}, \hat{\beta}$

Chulalongkorn University

Multinomial Logit Model (6)

$$\frac{\partial PA_{i}}{\partial X_{ki}} = \frac{e^{ZA_{i}}}{1 + e^{ZA_{i}} + e^{ZA_{i}}} \alpha_{k}
- \frac{e^{ZA_{i}}}{(1 + e^{ZA_{i}} + e^{ZA_{i}})^{2}} (e^{ZA_{i}} \alpha_{k} + e^{ZB_{i}} \beta_{k})
= \frac{e^{ZA_{i}}}{1 + e^{ZA_{i}} + e^{ZA_{i}}} (1 - \frac{e^{ZA_{i}}}{1 + e^{ZA_{i}} + e^{ZA_{i}}}) \alpha_{k}
- \frac{e^{ZA_{i}}}{1 + e^{ZA_{i}} + e^{ZA_{i}}} \frac{e^{ZB_{i}}}{1 + e^{ZA_{i}} + e^{ZA_{i}}} \beta_{k}$$

(c) Pongsa Pornchaiwiseskul, Faculty of Economic Chulalongkorn University

Multinomial Logit Model (6)

Interpretation

sign of $\alpha_k ==>$ direction of the own-effect of X_k on the probability to JOIN A.

sign of $\beta_k ==>$ direction of the cross-effect of X_k on the probability to JOIN A.

(c) Pongsa Pornchaiwiseskul, Faculty of Economics, Chulalongkorn University 43

Other Choice Models

- Nested Logit /Serial Logit
- Ordered Logit
- Generalized Extreme-Value (GEV)

LIMDEP

Models for Limited Dependent Varaibles

- Censored Regression
- Tobit Models

(c) Pongsa Pornchaiwiseskul, Faculty of Economics, Chulalongkorn University

7.