Choice Models

Covered Topics

- Binary Choice
-LPM
-logit
-logistic regresion
-probit
- Multiple Choice
-Multinomial Logit

Binary Choice

- Yes or No
- Buy or Not Buy
- Join or Not Join
- Own or Not Own
- Switch or Stay

Multiple Choice

- Yes, No, Abstain
- Buy, Sell or No Action
- Buy Brand A, B, C or None
- Join Plan X, Y or Z

Mutual Exclusiveness

Note that all the choices

 must be mutually exclusive and exhaustive. One and only one choice or event will occur.
Choice Model (1)

Question: What determines the choice selection?

Model to determine the probability of an event under a given condition (value of independent variables)

$$
\operatorname{Pr}(\text { choice } \# j)=\mathrm{F}_{j}\left(X_{1}, X_{2}, \ldots, X_{K}\right)
$$

where X 's are determinants for the probability.
(c) Pongsa Pornchaiwiseskul, Faculty of Economics,

Choice Model (2)

Note that

1) $\sum \operatorname{Pr}($ choice\# $j)=1$
2) function $\mathrm{F}_{j}()$ must return a value between 0 and 1

Quantification of Binary Choices

Example

JOIN $=1$ if the observation will join
the government-run health
insurance program
$=0$, otherwise

Quantification of Multiple Choices

$\mathrm{JA}=1$ if the observation will join Plan A
$=0$, otherwise
$\mathrm{JB}=1$ if the observation will join Plan B
$=0$, otherwise
$\mathrm{JC}=1$ if the observation will join Plan C
$=0$, otherwise
Note that $\mathrm{JA}+\mathrm{JB}+\mathrm{JC}=1$ always.

Binary Choice Model

General Structure

$$
\begin{aligned}
& \operatorname{Pr}(J O I N=1)=F\left(X_{1}, X_{2}, \ldots, X_{K}\right) \\
& \operatorname{Pr}(J O I N=0)=1-F\left(X_{1}, X_{2}, \ldots, X_{K}\right)
\end{aligned}
$$

Note that

$$
0 \leq F\left(X_{1}, X_{2}, \ldots, X_{K}\right) \leq 1
$$

Linear Probability Model (1)

Define $\quad P=\operatorname{Pr}(J O I N=1)$
Assumption of LPM
Linearity of $\mathrm{F}($.

$$
P=\beta_{1} X_{1}+\beta_{2} X_{2}+\cdots+\beta_{K} X_{K}
$$

Note that there is no error term

Linear Probability Model (2)

Formulation of LPM

$$
\begin{aligned}
& \mathrm{E}(\mathrm{JOIN})=(1) \mathrm{P}+(0)(1-\mathrm{P})=\mathrm{P} \\
\Rightarrow \Rightarrow \quad & \mathrm{JOIN}=\mathrm{P}+\mathrm{v}
\end{aligned}
$$

where v is an error term. $\mathrm{E}(\mathrm{v})=0$

$$
\begin{align*}
& \text { JOIN }=\beta_{1} X_{1}+\beta_{2} X_{2}+\cdots+\beta_{K} X_{K}+v \tag{1}\\
& =>\text { OLS is valid but not the best. Why? }
\end{align*}
$$

Linear Probability Model (3)

Note that

$$
\begin{aligned}
\mathrm{V}(\mathrm{~V}) & =\mathrm{V}(\mathrm{JOIN}) \text { but } \\
\mathrm{V}(\mathrm{JOIN}) & =(1-\mathrm{P})^{2} \mathrm{P}+(0-\mathrm{P})^{2}(1-\mathrm{P}) \\
& =\mathrm{P}(1-\mathrm{P})
\end{aligned}
$$

$=>V(V)$ is not constant. It depends on the independent variables (X's)
$=>$ Violation of a CLRM assumption or V is heteroscedastic

Linear Probability Model (4)

Define $\quad w=\sqrt{\frac{1}{P(1-P)}}$

$$
\begin{align*}
\text { JOIN }^{*}= & \beta_{1} X_{1}^{*}+\beta_{2} X_{2}^{*} \\
& +\cdots+\beta_{K} X_{K}^{*}+v^{*} \tag{2}
\end{align*}
$$

where

$$
\begin{aligned}
J O I N^{*} & =w J O I N \\
X_{k}^{*} & =w X_{k} \text { for } k=1, \ldots, K \\
v^{*} & =w v
\end{aligned}
$$

Linear Probability Model (5)

Note that

$$
\begin{aligned}
V\left(\nu^{*}\right) & =w^{2} V(v) \\
& =\frac{1}{P(1-P)} P(1-P) \\
& =1
\end{aligned}
$$

Linear Probability Model (6)

Estimation of LPM

Step 1 run OLS for unweighted model (1)

$$
=\Rightarrow \widehat{J O I N}=x \hat{\beta}
$$

Note that $\widehat{\text { OIN }}$ is the estimate for P

Linear Probability Model (7)

Step 2 compute the weight

$$
w=\sqrt{\frac{1}{\widehat{J O I N}(1-\widehat{J O I N})}}
$$

Step 3 compute JOIN*, $X_{1}^{*}, X_{2}^{*}, \ldots, X_{K}^{*}$
Step 4 estimate the weighted model (2) using OLS

Linear Probability Model (8)

Step 5 re-compute $\widehat{J O I N}$ using the new set of $\hat{\beta}$.

Note that LPM does not assure that

$$
0 \leq \widehat{\text { JOIN }} \leq 1
$$

or

$$
0 \leq F\left(X_{1}, X_{2}, \ldots, X_{K}\right) \leq 1
$$

Linear Probability Model (9)

Correction
If $\boldsymbol{X} \hat{\beta}<0$, set $\widehat{O I N}=0$
If $\boldsymbol{X} \hat{\boldsymbol{\beta}} 1$, set $\widehat{O I N}=1$

Linear Probability Model (10)

Linear Probability Model (11)

- Less expensive in computer time. No non-linear equations
$-\frac{\partial P}{\partial X_{k}}=\beta_{k} \quad$ is the effect of X on the
probability. In general, the explanatory variables should be unitless or are expressed in percentage

Logit Model (1)

Assumption of Logit

$F()$ is a logistic function

$$
\begin{aligned}
& P=\frac{1}{1+e^{-Z}} \\
& Z=\beta_{1} X_{1}+\beta_{2} X_{2}+\cdots+\beta_{K} X_{K}
\end{aligned}
$$

Note that $0 \leq F(Z) \leq 1$ always.

Logit Model (2)

Logit Model (3)

Note that OLS does not apply
ML Estimation of Logit model

$$
\max _{\boldsymbol{\beta}} L=\prod_{i=1}^{n}\left(P_{i}\right)^{Y_{i}}\left(1-P_{i}\right)^{\left(1-Y_{i}\right)}
$$

or $\max _{\boldsymbol{\beta}} \ln L=\sum_{i=1}^{n}\left[Y_{i} \ln \left(P_{i}\right)+\left(1-Y_{i}\right) \ln \left(1-P_{i}\right)\right]$
Note that $\mathrm{Y}=\mathrm{JOIN}$

Logit Model (4)

Note that

$$
1-P=\frac{1}{1+e^{Z}}
$$

First-order conditions
For $k=1, \ldots, K$

$$
\begin{aligned}
\frac{\partial \ln L}{\partial \beta_{k}}= & \sum_{i=1}^{n}\left[X_{k i} Y_{i} \frac{e^{-Z_{i}}}{1+e^{-Z_{i}}}\right] \\
& -\sum_{\substack{i=1 \\
e n t i n}}\left[X_{k i}\left(1-Y_{i}\right) \frac{e^{Z_{i}}}{1+e^{Z_{i}}}\right]=0
\end{aligned}
$$

Logit Model (5)

Solving FOC for ML estimates.
Second-order Conditions

$$
\begin{aligned}
\frac{\partial^{2} \ln L}{\partial \beta_{j} \partial \beta_{k}} & =-\sum_{i=1}^{n}\left[X_{j i} X_{k i} Y_{i} \frac{e^{Z_{i}}}{\left(1+e^{Z_{i}}\right)^{2}}\right] \\
& -\sum_{i=1}^{n}\left[X_{j i} X_{k i}\left(1-Y_{i}\right) \frac{e^{-z_{i}}}{\left(1+e^{-z_{i}}\right)^{2}}\right]
\end{aligned}
$$

yields Variance-covariance matrix of $\hat{\boldsymbol{\beta}}$

Logit Model (6)

Variance-Covariance Matrix for $\hat{\boldsymbol{\beta}}$

$$
V(\hat{\beta})=\left[-\frac{\partial^{2} \ln L}{\partial \beta_{j} \partial \beta_{k}}\right]^{-1}
$$

Note that it is not the estimated VC matrix.
Do Z-test or Chi-square test instead of ttest or F-test on parameters

Logit Model (7)

Interpretation

$$
\frac{\partial P}{\partial X_{k}}=\frac{e^{-Z_{i}}}{\left(1+e^{-z_{i}}\right)^{2}} \beta_{k}=\{+\} \beta_{k}
$$

sign of $\beta_{\mathrm{k}}==>$ direction of the effect of X_{k} on the probability to JOIN.

Logit Model (8)

No R^{2} for a logit model since there is no error term.
Define pseudo- $R^{2}=\frac{\# \text { correct prediction }}{\text { sample size }(\mathrm{n})}$
It is a measure for goodness-of-fit.
$\widehat{\mathrm{JOIN}}>0.5=\Rightarrow$ predict that JOIN $=1$
$\widehat{\mathrm{OIN}}<0.5=\Rightarrow$ predict that JOIN $=0$

Logistic Regression (1)

Assumption of Logistic Regression

$F($.$) is a logistic function but the$ observation(experiment) for each given set of independent variables (X) will be repeated several times.

Only the proportion of JOIN=1 can be observed.

Logistic Regression (2)

From Logit Model
$\ln \left(\frac{P}{1-P}\right)=\beta_{1} X_{1}+\beta_{2} X_{2}+\cdots+\beta_{K} X_{K}$
Note that P is the expected proportion of population JOINing given X's

Logistic Regression (3)

Define
$\mathrm{R}_{\mathrm{i}}=$ observed proportion of observation with the same value of \mathbf{X}_{i} that JOIN.

Derived Model

$$
\begin{gathered}
\ln \left(\frac{R_{i}}{1-R_{i}}\right)=\beta_{1} X_{1 i}+\beta_{2} X_{2 i}+\cdots+\beta_{K} X_{K i}+v_{i} \\
V\left(v_{i}\right)=\frac{1}{N_{i} R_{i}\left(1-R_{i}\right)} \quad \text { Why? }
\end{gathered}
$$

Logistic Regression (4)
 Define $w=\sqrt{N_{i} R_{i}\left(1-R_{i}\right)}$

Estimation

$$
R_{i}^{*}=\beta_{1} X_{1 i}^{*}+\beta_{2} X_{2 i}^{*}++\beta_{K} X_{k i}^{*}+v_{i}^{*}
$$

where

$$
\begin{aligned}
& R_{i}^{*}=w_{i} \ln \left(\frac{R_{i}}{1-R_{i}}\right) \\
& X_{k i}^{*}=w_{i} X_{k i} \text { for } k=1, \ldots, K \\
& v_{i}^{*}=w_{i} v_{i} \\
& \text { untmenten }
\end{aligned}
$$

Logistic Regression (5)
 $=>$ OLS is BLUE

Interpretation of the parameters same as those for logit model as the underlying function is also logistic

Probit Model (1)

Assumption of Probit

$F()$ is a cumulative distributio No error term
F() is a cumulative distribution function of a standard normal.

$$
\begin{aligned}
& P=\Phi(Z) \\
& Z=\beta_{1} X_{1}+\beta_{2} X_{2}+\cdots+\beta_{K} X_{K}
\end{aligned}
$$

Note that $0 \leq \Phi(Z) \leq 1 \quad$ always.

Probit Model (2)

Multinomial Logit Model (1)

Assumption of Multinomial Logit

Define

$$
\begin{aligned}
& \mathrm{PA}_{\mathrm{i}}=\operatorname{Pr}\left(\mathrm{JA}_{\mathrm{i}}=1\right) \\
& \mathrm{PB}_{\mathrm{i}}=\operatorname{Pr}\left(\mathrm{JB}_{\mathrm{i}}=1\right) \\
& \mathrm{PC}_{\mathrm{i}}=\operatorname{Pr}\left(\mathrm{JC}_{\mathrm{i}}=1\right)
\end{aligned}
$$

Choose the choice of plan C as the reference.

Multinomial Logit Model (2)

$$
\frac{P A_{i}}{P C_{i}}=e^{Z A_{i}}
$$

where $Z A_{i}=\alpha_{1} X_{1 i}+\alpha_{2} X_{2 i}+\cdots+\alpha_{K} X_{K i}$

$$
\frac{P B_{i}}{P C_{i}}=e^{Z B_{i}}
$$

where $Z B_{i}=\beta_{1} X_{1 i}+\beta_{2} X_{2 i}+\cdots+\beta_{K} X_{K i}$

Multinomial Logit Model (3)

$$
\begin{aligned}
& \frac{P A_{i}+P B_{i}}{P C_{i}}=e^{Z A_{i}}+e^{Z B_{i}} \\
& 1+\frac{P A_{i}+P B_{i}}{P C_{i}}=1+e^{Z A_{i}}+e^{Z B_{i}} \\
& P C_{i}=\frac{1}{1+e^{Z A_{i}}+e^{Z B_{i}}}
\end{aligned}
$$

Multinomial Logit Model (4)

$$
\begin{aligned}
P A_{i} & =\frac{e^{Z A_{i}}}{1+e^{Z A_{i}}+e^{Z B_{i}}} \\
P B_{i} & =\frac{e^{Z B_{i}}}{1+e^{Z A_{i}}+e^{Z B_{i}}}
\end{aligned}
$$

Multinomial Logit Model (5)

ML Estimation of Multinomial Logit model

$$
\max _{\boldsymbol{\beta}} L=\prod_{i=1}^{n}\left(P A_{i}\right)^{J A_{i}}\left(P B_{i}\right)^{J B_{i}}\left(1-P A_{i}-P B_{i}\right)^{\left(1-J A_{i}-J B_{i}\right)}
$$

$$
\text { or } \underset{\boldsymbol{\beta}}{\max } \ln L=\sum_{i=1}^{n}\left[J A_{i} \ln \left(P A_{i}\right)+J B_{i} \ln \left(P B_{i}\right)\right.
$$

$$
\left.+\left(1-J A_{i}-J B_{i}\right) \ln \left(1-P A_{i}-P B_{i}\right)\right]
$$

Solving FOC yields $\hat{\boldsymbol{\alpha}}, \hat{\boldsymbol{\beta}}$

Multinomial Logit Model (6)

Interpretation

$$
\begin{aligned}
\frac{\partial P A_{i}}{\partial X_{k i}}= & \frac{e^{2 A_{i}}}{1+e^{2 A_{i}}+e^{2 A_{i}}} \alpha_{k} \\
& -\frac{e^{2 A_{i}}}{\left(1+e^{2 A_{i}}+e^{Z A_{i}}\right)^{2}}\left(e^{2 A_{i}} \alpha_{k}+e^{2 B_{i}} \beta_{k}\right) \\
= & \frac{e^{2 A_{i}}}{1+e^{Z A_{i}}+e^{Z A_{i}}}\left(1-\frac{e^{2 A_{i}}}{1+e^{Z A_{i}}+e^{2 A_{i}}}\right) \alpha_{k} \\
& -\frac{e^{2 A_{i}}}{1+e^{2 A_{i}}+e^{2 A_{i}}} \frac{e^{2 B_{i}}}{1+e^{Z A_{i}}+e^{Z A_{i}}} \beta_{k}
\end{aligned}
$$

Multinomial Logit Model (6)
 Interpretation

sign of $\alpha_{\mathrm{k}}==>$ direction of the own-effect of X_{k} on the probability to JOIN A.
sign of $\beta_{\mathrm{k}}==>$ direction of the cross-effect of X_{k} on the probability to JOIN A.

Other Choice Models

- Nested Logit /Serial Logit
- Ordered Logit
- Generalized Extreme-Value (GEV)

LIMDEP

Models for Limited Dependent

Varaibles

- Censored Regression
- Tobit Models

