Introduction to Duration Models

1 What is Duration Analysis?

Duration analysis is sometimes referred to as survival analysis or event history analysis. Duration
data can be thought as being generated by what is called a ‘failure time process’. A failure time
process consists of units — individuals, governments, countries, and so on — that are observed at some
starting point in time. These units are in some state — the individual is healthy, the government is
in power, a country is at peace, and so on — and are then observed over time. At any given point
in time, these units are ‘at risk’ of experiencing some event, where an ‘event’ essentially represents
a change or transition to another state — the individual dies, the government falls from power, a
country is at war, and so on. After the event is experienced, the unit is either no longer observed
or it is at risk of experiencing another kind of event. In some circumstances, units are not observed
experiencing an event; that is, no transition is made from one state to another while the unit is
being observed — the individual remains healthy, the government remains in power, the country
remains at peace, and so on. As we will see, we call these cases ‘censored’ since we do not observe
the subsequent history of the unit after the last observation point. This process is called a ‘failure
time process’ because (a) units are observed at an initial point in time, (b) the unit survives for
some length of time (or spell), and (c) then the unit ‘fails’ or is ‘censored’.

2 Some Intuition

2.1 The Basics of Duration Analysis

In duration analysis, we are typically interested in some event occuring.! For example, we might
be interested in one of the following events:

e Government collapses

e War starts

e Cabinet reshuffle

e Democracy emerges

e Policy is adopted

e Job loss

e and so on

!These notes on the intuition behind duration analysis are based on notes from Brad Jones, August 2005, ICPSR
MLE-2.



In general, we think of events as being probabilistic. And so we might ask:

What are the chances that the government collapses?

How likely is it for war to start?

Will there be a cabinet reshuffle?

e What are the chances that democracy emerges

e and so on

Given this setup, we might want to incorporate time into these questions. If we do so, then ‘chance’
essentially becomes synonymous with ‘risk’. In other words, instead of saying ‘What are the chances
that the government collapses?’, we would say, ‘What is the risk that the government collapses?’
Below are some more examples of what I mean.

e Duration of Government

— Event: Government collapses

— Timing: Days in office

— Risk: ‘Given a government has stayed in office for 340 days, what is the risk that it will
now lose office?’

e Duration of peace

— Event: War onset
— Timing: Years of peace

— Risk: ‘Given that a country has been at peace for 14 years, what is the likelihood or risk
that it will be at war next year?’

As these examples illustrate,

Timing implies Risk: Given that something has not yet happened, what are the
chances it will happen subsequently?

But, what exactly is risk? Risk is captured in the following formula:

CHANCE THAT SOMETHING HAPPENS
CHANCE THAT IT HASN'T HAPPENED YET

RisKk =

In other words, ‘risk’ is a ratio — a relationship between the chances that something can happen
relative to the chances that it has not happened yet. A slightly different way to write this ratio,
which will be helpful as you will see, is:

P(FAILURE)

RISK = ————7—+~
oK P(SURVIVAL)



With this in hand, I should provide some definitions.

o Failure: The unconditional probability that an event will occur.
° Survival: The probability that ‘up until now’ the event has not yet occurred.

o Risk: The conditional failure rate — given that the event has not yet occurred, what are the
chances that it will occur?

And so the risk ratio can be written as:

F
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Conventionally in duration analysis, the risk ratio is called the HAZARD RATIO. As we will see, the

hazard ratio is at the center of duration analysis.

Typically, scholars will follow something like the procedure outlined below to conduct their duration
analysis:

1. Develop a theory linking various factors (independent variables) to some event. For example,
scholars might develop a theory linking factors such as the number of parties in government
to government collapse.

2. Observe some ‘sample’ over time. For example, scholars might look at different governments
in a country and/or across countries.

3. Record whether some event of interest occurs over time. Does a government collapse?
4. Collect data on the independent variables

5. Model the ‘event’ or ‘time until the event’ as a function of the independent variables.

2.2 The Basics of Duration Data

So, what does basic duration data look like? In Figure 1, I show data from the Constitutional
Change and Parliamentary Democracy (CCPD) project on the duration of governments in Belgium
from 1946 to 1998.2 The data indicate the name of the prime minister, the parties in the government,
the date the government started, the date the government ended, the duration of the government,
whether the government was a minimal winning coalition or not, and whether the government ended
(event). The EVENT variable represents the transition from one state (one government) to another
(a different government). The premise of duration analysis is to model both the duration of time
spent in the initial state and the transition to a subsequent state. Units not experiencing an event
by the last observation period are called ‘right-censored’. As you can see in Figure 1, the observation
for government 33 in Belgium is right-censored — we know when it started (June 23, 1995) but this

2The Constitutional Change and Parliamentary Democracy (CCPD) project can be found at http://www.pol.
umu.se/ccpd/CCPD/index . asp.



Figure 1: Duration of Governments in Belgium

cabinetcode countryname cabinet_name cabinet_parties date_in date_out duration mwe event

1 201 belgium Spaak PSE/BSP 460313 480320 7 o 1

2 202 belgium Vvan Acker IIT PSE/BSP, LP/PL, PCE/KPE 460331 460709 100 1 1

3 203 belgium Huysmans PSE/BSP, LP/PL, PCE/KPE 460803 470313 222 1 1

4 204 belgium Spaak II CVP/P5C, PSE/ESP 470320 490627 830 1 1

5 205 belgium Eyskens CVP/P5C, LP/PL 490811 500318 219 1 1

[ 206 belgium Duvieusart CVP/PSC 500608 500811 64 0 1

7 207 belgium Pholien CVP/PSC 500816 520109 511 0 1

8 208 belgium van Houtte CVP/PSC 520115 540412 818 0 1

9 209 belgium Van Acker IV PSE/BSP, LP/PL 540422 580602 1502 1 1
10 210 belgium Eyskens II CVP/PSC 580623 581104 134 o 1
11 211 belgium Eyskens III CVP/P5C, LP/PL 581106 610327 872 1 1
12 212 belgium Lefevre CVP/P5C, PSB/BSP 610425 650524 14390 1 1
13 213 belgium Harmel CVP,/P5C, PSB/BSP 650727 660211 199 1 1
14 214 belgium Van den Boeynants T CVP/PSC, LP/PL 660319 680207 690 1 1
15 215 belgium Eyskens IV CWP, PSC, PSB/BSP BE0617 7111038 1239 o 1
16 216 belgium Eyskens V CWP, PSC, PSB/BSP 7z0121 721123 307 o 1
17 217 belgium Leburton PSE/ESP, CVP, PSC, WLD, PRL 730126 740113 358 o 1
18 218 belgium Tindemans CVP, PSC, VLD, PRL 740425 740611 47 o 1
19 219 belgium Tindemans IT CVP, P3C, VLD, PRL, RW 740612 770304 996 1 1
20 220 belgium Tindemans IIT CVP, PSC, VLD, PRL 770306 770418 43 1 1
21 221 belgium Tindemans IV CVP, P5C, PSE/BSP, VU, FDF 770603 781011 495 0 1
22 222 belgium | van den Boeynants II CVP, P3C, PSB/BSP, VU, FDF 781020 781218 59 0 1
23 223 belgium Martens I CWP, P5C, PS5, 5P, FDF 790403 800116 288 0 1
24 224 belgium Martens II CVvP, PSC, P5, 5P 800123 300409 77 o 1
25 225 belgium Martens III CVvP, PSC, P5, 5P, VLD, PRL 800518 801007 142 o 1
26 226 belgium Martens IV CvP, PSC, PS5, 5P 801022 810402 162 1 1
27 227 belgium M Eyskens CVP, P3C, P53, 5P 810406 810921 163 o 1
28 228 belgium Martens V CVP, P5C, VLD, PRL 811217 851014 1397 1 1
29 228 belgium Martens VI CVP, PSC, VLD, PRL 851128 871214 746 1 1
30 230 belgium Martens VIT CVP, P3C, P35, 5P, WU 880509 910929 1238 o 1
31 231 belgium Martens VIII CVP, PSC, P5, 5P 9109239 911125 57 o 1
3z 232 belgium Dehaenen I CVP, P3C, P35, 5P 9Z0307 950521 1170 1 1
33 233 belgium Dehaene II CVP, P3C, P53, 5P 950623 1 o

government was still in power when the CCPD project stopped observing governments in Belgium
(December 31, 1998) and, as a result, we do not know when it ended.?

The data shown in Figure 1 are relatively straightforward and are what we call ‘single-spell’
data because each government is only at risk of collapse once - when the government collapses, it
leaves the data set. Later on, we will look at ‘multiple-spell’ data in which units are at risk of an
event multiple times. We will also look at data in which units are at risk of multiple (different)
events, possibly multiple times.

2.3 Why not OLS?

As Figure 1 illustrates, we have a variable indicating whether the government is a minimal winning
coalition (MWC) or not. There are various arguments in political science suggesting that minimal
winning coalition governments are likely to last longer than other types of governments. Suppose

3In some applications of duration analysis, we have what is called ‘left-truncation’. Left truncation occurs when
we do not observe the time-of-origin for an observation. In other words, an observation enters the study already in
process. In our example of government duration in Belgium, left-truncation would involve something like the following
— when we started observing Belgian government’s in January 1945, there was already a government in place but for
some reason we did not know when that government first came to office.



Figure 2: Duration of Governments in Belgium

regress duration mwc;

Source | SS df MS Number of obs = 32
e F( 1, 30) = 4.72
Model | 1008392.83 1 1008392.83 Prob > F = 0.0379
Residual | 6410742.64 30 213691.421 R-squared = 0.1359
e e Adj R-squared = 0.1071
Total | 7419135.47 31 239326.951 Root MSE = 462.27
duration | Coef. std. Err. t P>|t] [95% conf. Intervall]

—— —— —— —— —— —— _+________________________________________________________________
mwc | 355.7294 163.7565 2.17 0.038 21.2941 690.1647

_cons | 353.4706 112.1164 3.15 0.004 124.4984 582.4428

we wanted to test to see whether this is indeed the case using data from Belgium. What should
our modeling strategy be? Well, you might think to use ordinary least squares (OLS) and use the
DURATION variable as the dependent variable and the MWC variable as the independent variable.
You would then interpret the results in the standard way. For example, the positive and significant
coefficient on MWC tells us that governments that are minimal winning coalitions have a significantly
longer duration (survival time) in office than governments that are not minimal winning coalitions.
Specifically, the expected duration (survival time) of a government that is a minimal winning
coalition has historically been 355.7 days longer than a government that is not a minimal winning
coalition. This indicates that governments that are minimal winning coalitions have historically had
a higher ‘survival’ rate, thereby implying that they have historically had a lower ‘risk’ or ‘hazard
rate’.

Although we obviously could use OLS to test our hypothesis, we almost certainly shouldn’t.
As I'll now demonstrate, there are a number of problems with using OLS when we have duration
data. These problems nearly always necessitate moving towards some kind of modeling strategy
that is specifically designed for duration data. So, what are the problems with OLS?

1. Normality Assumption

OLS assumes that the duration times (conditional on the independent variables) are normally
distributed. This assumption is nearly always unrealistic in the context of duration data where
data often exhibit asymmetry, particularly if some observations have very long durations (right
skewed). Among other things, this means that the median will describe the central tendency
better than the mean. If you look at Figure 3, this is exactly the case with the data on the
duration of governments in Belgium. One common fix to this problem is to transform the
dependent variable by taking the natural log and then applying OLS. For example, you would
have Iny; = fx; + €;. Although this mitigates the skewness problem, it does not solve other
serious problems that we will now discuss.



Figure 3: Duration of Governments in Belgium
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2. Negative Predicted Values
OLS may return negative predicted values even though this is impossible — survival times
must be positive.

3. Censoring
OLS does not easily distinguish between ‘censored’ and ‘uncensored’ observations. Dropping
censored observations could lead to sample selection problems.*

4. Time Varying Covariates
OLS cannot easily accommodate independent variables that change value over time (TVCs).

These problems are important and suggest we should move towards a modeling strategy that is
specifically designed for duration data. But what strategy would that be?

4Typically, right-censored observations can be dealt with using something like a tobit model.



2.4 Parametric, Semi-Parametric, and Non-Parametric Approaches

There are essentially three main approaches: parametric, semi-parametric, and non-parametric
models.

2.4.1 Parametric Models

The main problem with OLS has to do with the assumption that the disturbances are normally
distributed.® Substituting in a more reasonable distributional assumption for the disturbances leads
to the adoption of parametric duration models such as the exponential, weibull, log-logistic, and
so on. One potential problem with these models is that we are still having to make an assumption
about the distribution of the disturbances and, hence, the distribution of the survival times. As a
result, we might want to look for a modeling strategy that does not require any assumption about
the distribution of the survival times. How can we do this?

2.4.2 Semiparametric Models

The key to removing the distributional assumption is that, because events occur at given points
in time, they can be ordered. We can then conduct our analysis using the ordering of the survival
times exclusively. Let me demonstrate this point. In Table 1, I present failure times for five units
where X is some independent variable.

Table 1: Sample Duration Data

time x
1 3

) 2

9 4
20 9
22 10

Suppose we now ask the following question: ‘What is the probability of failure after the
exposure to the risk of failure for one unit of time?’ This reduces the analysis to a basic binary
outcome analysis. See Table 2. We might then conduct a logit or probit analysis where OUTCOME
is the dependent variable.

logit outcome x

Obviously, this would be an extremely inefficient use of the data. The advantage of this approach,
though, is that there is no need to make an assumption about the distribution of survival (failure)
times. Note, though, that there is nothing magical about the first failure time. We could have

"Much of this material is based on Cleves, Gould, & Gutierrez (2004).



Table 2: Sample Duration Data

time x outcome
1 3 1
) 2 0
9 4 0
20 9 0
22 10 0

chosen to analyze the second failure time, which in this case is at TIME = 5. This would have
meant asking, ‘What’s the probability of failure, given exposure to 5 units of time?’ To conduct
such an analysis, we would have to drop the first observation since this observation was not exposed
to failure for 5 units of time, recode the OUTCOME variable, and then run our logit or probit model.

drop outcome
generate outcome = cond(time==5,1,0) if time>=5
logit outcome x if time>=5

We could repeat this procedure for all of the different failure times. You might wonder whether
it is possible to combine all of these different analyses and constrain the appropriate regression
coefficients, such as the coefficient on x, to be the same. The answer is that this is possible. Such
an approach leads to semiparametric duration analysis and, specifically, to the Cox model if a
conditional logit model is fit for each analysis.® Note that time plays no role in this analysis other
than to indicate the ordering of the observations. For example, no account is taken of the fact that
the second observation in Table 2 fails in period 5 whereas the first observation failed in period 1;
all that matters is that the second observation failed after the first one. The approach to duration
analysis that I have just indicated goes under the name of semiparametric analysis. The reason
is that this approach is non-parametric when it comes to time, but it is still parametric in the
sense that we are still parameterizing the effect of X. In other words, there is still a parametric
component (logit, probit, etc.) to the analysis.

2.4.3 Nonparametric Models

An entirely non-parametric approach does away with assumptions about how each unit’s observed
X value determines the probability of failure. Nonparametric methods that are used elsewhere in
the social sciences such as lowess often have difficulty with duration data because they cannot deal
adequately with censoring and other issues. That said, when there are no independent variables, or
the independent variables are qualitative in nature, then we can use certain nonparametric methods
to estimate things like the probability of survival past a certain point in time. Nonparametric
models do not make assumptions about (a) the distribution of failure times or (b) how independent
variables change survival experiences.

5The only difference between the conditional logit model and the logit model we have used here is that the
conditional logit model conditions on the fact that ‘outcome==1’ for one and only one observation within each
separate analysis.



2.4.4 Connecting the Approaches

The semiparametric approach that we just looked at basically conducted a series of analyses:

P(failure after exposure for (exactly) 1 unit of time)

P(failure after exposure for (exactly) 5 unit of time)

( ( )

( ( )
P(failure after exposure for (exactly) 9 unit of time)
P(failure after exposure for (exactly) 20 unit of time)
( ( )

P(failure after exposure for (exactly) 22 unit of time)
But why not try to make this approach more efficient by also adding other analyses:

P(failure after exposure for (exactly) 1.1 unit of time)
P(failure after exposure for (exactly) 1.2 unit of time)

P(failure after exposure for (exactly) 1.3 unit of time)

The problem is that to conduct these analyses, we would need to make an assumption about the
distribution of failure times. Basically, this is what parametric models do. As Cleves, Gould, and
Guttierrez (2004, 6) note, ‘Semiparametric analysis is nothing more than a combination of separate
binary-outcome analyses, one per failure time, while parametric analysis is a combination of several
analyses at all possible failure times.” Parametric analyses will be more efficient (standard errors
will be smaller) so long as the distributional assumptions that are made are appropriate.

When no covariates are present, semiparameric methods such as the Cox model will produce
estimates of relevant quantities such as the probability of survival past a certain point in time that
are identical to the nonparametric estimates. If the covariates are qualitative in nature, parametric
and semiparametric models should yield more efficient tests and comparisons of the groups than
nonparametric methods, and these tests should agree. Should the tests disagree, then this is a signal
that some of the assumptions made by the parametric and semiparametric models are incorrect.

References

Cleves, Mario A., William W. Gould & Roberto G. Gutierrez. 2004. An Introduction to Survival
Analysis Using STATA. Texas: STATA Corporation.



