Correlation Theory

Still bi-variate statistics

 $X \sim random variable$

 $Y \sim random variable$

(c) Pongsa Pornchaiwiseskul,

1

Covered Topics

• Pearson's Correlation

• Spearman's Rank Correlatiion

(c) Pongsa Pornchaiwiseskul,

Population Covariance (1)

Definition

$$\sigma_{XY} = E[(X - \mu_X)(Y - \mu_Y)]$$
$$= \iint (x - \mu_X)(y - \mu_Y)f(x, y)dxdy$$

a constant

(c) Pongsa Pornchaiwiseskul,

Population Covariance (2)

Sign of Covariance

Positive ==> if one RV is above or below its mean, the other RV tends to be also above or below its mean

Negative ==> if one RV is above or below its mean, the other RV tends to be below or above its mean

Population Covariance (3)

Magnitude of Covarinace

unbounded

depends on the units of both RV's

Unit of covariance

= unit of X times unit of Y

e.g., X is in Baht and Y is in Kilogram

 $\sigma_{_{\rm XY}}$ is in Baht-Kilogram

Population Correlation (1)

• <u>Definition</u>

• <u>Sign of Correlation</u>

-same as that of Covariance

(c) Pongsa Pornchaiwiseskul,

Population Correlation (2)

Magnitude of Correlation

always bounded between -1 and 1

$$-1 \le \rho_{XY} \le +1$$

Unit of Correlation

no unit

comparable between populations

Population Correlation (3)

Interpretation of Correlation

 $\rho_{XY} = +1 ==> If a variable is above or below its mean, the other will be above or below its own mean with certainty$

- $\rho_{XY} = -1 => If a variable is above or below its mean, the other will be below or above its own mean with certainty$
- $\rho_{XY} = 0 \implies$ If a variable is deviated from its mean, the other will be expected at its mean

Sample Covariance

 $s_{\rm XY}$ is an estimator for $\sigma_{\rm XY}$

Required paired sample

C1 1 1 1 TT' '

9

Paired Sample of Size n

i	×i	Y _i
1	X ₁	Y ₁
2	X_2	Y_2
:	:	÷
:	-	-
n	X _n	Y _n

Sample Correlation (1)

 $r_{\rm XY}$ is an estimator of $\rho_{\rm XY}$

Definition $r_{XY} = \frac{S_{XY}}{S_X S_Y}$ Sign of sample Correlation

same as that of sample Covariance

(c) Pongsa Pornchaiwiseskul,

Sample Correlation (2)

<u>Magnitude of Sample Correlation</u> same as population correlation always bounded between -1 and 1 $-1 \le r_{XY} \le +1$ Unit of sample Correlation no unit comparable between data sets

(c) Pongsa Pornchaiwiseskul,

Test for Zero Correlation

$$H_0: \rho_{XY} = 0$$
$$H_1: \rho_{XY} \neq 0$$

$$t_{cal} = \frac{r_{XY}}{\sqrt{\frac{1 - r_{XY}^2}{n - 2}}} \sim t(n - 2)$$

Perform a Two-sided test.

Test for Non-zero Correlation (1) $\mathbf{H}_{\mathbf{0}}: \rho_{XY} = a, \quad a \neq 0$ $\mathbf{H}_1: \rho_{XY} \neq a$ Theorem $\omega = \frac{1}{2} \ln \left(\frac{1+r}{1-r} \right),$ $\mu_{\omega} = \frac{1}{2} \ln \left(\frac{1+\rho}{1-\rho} \right)$

Test for Non-zero Correlation (2)

$$\omega \sim N\left(\mu_{\omega}, \frac{1}{n-3}\right)$$

$$z_{cal} = \frac{\omega - \mu_{\omega}}{\sqrt{\frac{1}{n-3}}} \sim N(0,1)$$

Perform a Two-sided test.

Rank Correlation(1) Two judges (A and B) are to rank n different objects (contestants) **Question**: Are the two judges correlated? How can similarity or dissimilarity be measured?

(c) Pongsa Pornchaiwiseskul,

Rank Correlation(2)

Spearman's Rank Correlation (sample)

$$6\sum_{i} D_{i}^{2}$$

$$r' = 1 - \frac{i}{n(n^{2} - 1)}$$

No definition for population rank correlation

(c) Pongsa Pornchaiwiseskul,

Rank Correlation(3)

 R_{ij} = rank given to object i by judge j

 $D_i = rank$ difference for object i

$$= R_{iA} - R_{iB}$$

(c) Pongsa Pornchaiwiseskul,

Rank Correlation(4)

Paired Sample of Size n

i	RĄ	RB _i
1	RA ₁	RB ₁
2	RA_2	RB_2
:		
÷	:	:
n	RĄ	RB _n

19

Rank Correlation(5)

Magnitude of Correlation

always bounded between -1 and 1

$$-1 \le r_{XY}^{,} \le +1$$

Unit of Correlation

no unit

comparable between populations

(c) Pongsa Pornchaiwiseskul,

~1 1 1 1 TT' '

Rank Correlation(6)

Interpretation of Sample Rank Correlation

 $r'_{XY} =+1 ==>$ If both judges totally agree on the rankings of all the n objects $r'_{XY} =-1 ==>$ If both judges totally disagree on the rankings of all the n objects $r'_{XY} = 0 ==>$ If the two judges are uncorrelated

^1 1 1 1 TT' '

Test for Zero Rank Correlation

$$H_0: \rho'_{XY} = 0$$

 $H_1: \rho'_{XY} \neq 0$

Perform a Two-sided Z-test.

Test for Non-zero Rank Correlation

No such a thing??