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DECISION MAKING TOOLS
• Statistics
• operations research (a 

mathematical optimization model of 
a complex system)
– deterministic, e.g., Linear 

Programming, transportation problem
– stochastic, e.g., decision tree, 

queuing theories
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Coverage
• Linear/Integer/Mixed Programming

• Network system

• Multiple objective

• Inter-temporal (dynamic) system

• uncertainty (stochastic)
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MATHEMATICAL PROBLEMS

• Most decision making problems could be 

formulated as a mathematical problem.

• Decision making processes can be represented 

with mathematical functions and constraints.

• Some decision making problems involve 

optimization of an objective function. Others try 

to simulate the result of various decisions before 

the decision can be made.
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OPTIMIZATION PROBLEMS

• maximize or minimize an 

objective function

• subject to various constraints.
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EXAMPLES OF OBJECTIVE FUNCTIONS

• net profit

• output or throughput

• cost or input

• time

• likeliness or probability

• variance or uncertainty
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EXAMPLES OF CONSTRAINTS

• staffing

• space

• budget

• time

• technology
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LINEAR PROGRAMMING(LP) PROBLEM

• mathematical optimization 

problem

• its objective function and 

constraints are all linear
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EXAMPLE OF AN LP PROBLEM

 A hypothetical hospital of 30 beds has two service 
departments (OPD and IPD). The In-Patient 
Department (IPD) needs 2 doctor-hours and 4 nurse-
hours for every patient-day. In Out-Patient 
Department(OPD), each doctor-hour must be 
supported by 4 nurse-hours. The hospital can offer no 
more than 50 doctor-hours of OPD service in a day. 
The hospital can earn $120 for every patient-day in 
IPD and $80 for every doctor-hour in OPD. The 
hospital has a limited resource of 80 doctor-hours and 
240 nurse-hours per day. Determine the resource 
allocation between  OPD and IPD so that income of 
the hospital is maximized.
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STRUCTURE OF THE LP
(for the example)

Objective = maximize income

Constraints

1) # of doctor-hours

2) # of nurse-hours

3) # of beds

4) # of OPD service hours
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DEFINE THE VARIABLES

X1 = # of in-patients per day

X2 = # of OPD doctor-hours per day 
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LP REPRESENTATION
max               Z = 120X1 + 80X2

X1 ,X2
s.t.             2X1 +   X2  <=  80    --------(1)

4X1 + 4X2  <=  240      --------(2)
X1  <= 30         --------(3)
X2  <= 50         --------(4)

X1 ,X2 >= 0
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NOTE You will get a different LP representation if you 

define the variables differently. Anyway, all the LPs 

still represent the same decision-making problem

Let’s define

Y1 = # of IPD doctor-hours per day

Y2 = # of OPD nurse-hours per day
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ANOTHER LP REPRESENTATION

max               Z = 60Y1 + 20Y2
Y1 ,Y2
s.t.             Y1 + 0.25Y2  <=  80    --------(1’)

2Y1 +  Y2  <=  240  --------(2’)
Y1  <= 60     --------(3’)
Y2  <= 200   --------(4’)

Y1 ,Y2 >= 0
Replace X1 with 0.5Y1 and X2 with 0.25Y2
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HOW TO SOLVE AN LP PROBLEM

• Graphical Method

• Simplex method

– by hand (not discussed)

– by computer
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GRAPHICAL METHOD

• good for LPs with two 

variables

• make it easy to understand 

solving an LP
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SIMPLEX METHOD

• algebraic method developed by George Dantzig

• need to understand it very well if you want to do it by 
hand or develop a computer program to do it

• quite a few computer programs can do this,e.g.,

– LINDO (Windows versions)

– Microsoft Excel

– MPSX (IBM mainframe)
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LP SOLUTIONS OR RESULTS

• Unique Solution
– no other values of LP variables will yield the 

same optimized value of objective function

• Alternative Solution (non-unique)

– infinitely many feasible solutions

• Infeasible solution
– No values of LP variables satisfying the 

constraints
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LINDO Inputs

 MAX     120 x1 + 80 x2
SUBJECT TO

2)   2 x1 + x2 <= 80
3)   4 x1 + 4 x2 <=240
4)   x1 <= 30
5)   x2 <= 50

END
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LINDO Report

LP OPTIMUM FOUND AT STEP      3

OBJECTIVE FUNCTION VALUE

        1)      5600.000
VARIABLE        VALUE          REDUCED COST

X1        20.000000          0.000000

X2        40.000000          0.000000
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LINDO Report (cont’d)

ROW   SLACK OR SURPLUS     DUAL PRICES

        2)         0.000000         40.000000
        3)         0.000000         10.000000
        4)        10.000000          0.000000
        5)        10.000000          0.000000

NO. ITERATIONS=       3
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DUAL SOLUTIONS

• For each constraint, there exist a dual variable sometimes 

called dual price

• Define

mi = dual variable for constraint i

= change in Z / change in RHS value

• Graphical method cannot give a dual solution (value of dual 

variables) but Simplex can
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MEANING OF DUAL SOLUTION
(First Representation)

m1 = opportunity cost of a doctor-hour

m2 = opportunity cost of a nurse-hour

m3 = opportunity cost of a bed-day

m4 = opportunity cost of the OPD limit


