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Overview of Presentation 
 

� Background  
 
� Linear mixed model (LMM) and the EBLUP of the small area mean 

 
� Spatial nonstationary extension to the LMM and the NSEBLUP   

 
� MSE estimation  

 
� Empirical evaluations: model-based and design-based simulations 

 
� Concluding remarks 
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Background 
 

��  Unit level linear mixed models with area specific random effects are 
now quite popular in small area estimation (SAE)  

 
� The empirical best linear unbiased predictor (EBLUP) is widely used 

technique of SAE under these models and proven to be efficient, 
see Rao (2003)  

 
� In many SAE problems, it is not always possible to use the unit level 

small area model simply because of the unavailability of the unit level 
data 

 
� In such circumstances, SAE is carried out under area level random 

effect models  
 
� The Fay–Herriot model is widely used area level model in SAE (Fay 

and Herriot, 1979) - one of the most popular methods of SAE 
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Background 
 

� The fixed effects parameters are spatially invariant 
 

� There are situations (e.g., agricultural, environmental data etc), 
where the relationship between y and x is not constant over the 
study area, that is, the regression coefficients vary spatially across 
the geography of interest, a phenomenon referred to as spatial 
nonstationarity 

 
� The Fay–Herriot model does not account for the presence of spatial 

nonstationarity in the data  
 
� Geographical weighted regression (GWR) approach - suitable for 

modelling spatial nonstationarity (Fotheringham et al., 2002) 
 
� We use the geographically weighted concept to fit Fay–Herriot 

model and consider SAE under this model  
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Area Level Model in SAE 
 

� The simple area specific two stage model suggested by Fay and 
Herriot (1979) is described as  

 

i i i
y Y e= + , and ( 1,..., )

T

i i i
Y u i m= + =x ββββ  

 

� The first stage accounts for the sampling variability of the direct 
survey estimates 

i
y  of true area values (e.g., population means) 

i
Y  and 

the second stage links the true area values 
i

Y  to a vector of known 

auxiliary variables 
i

x  

 
� We can express this model as an area level linear mixed model  

; 1,...,
T

i i i i
y u e i m= + + =x ββββ  

 

� ββββ  is a p-vector of unknown fixed effect parameters 

 

� 
i

u ’s are iid normal random errors with ( ) 0
i

E u =  and 
2

( )
i u

Var u σ=  
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Area Level Model in SAE 
 

� 
i

e ’s are independent sampling errors normally distributed with 

( | ) 0
i i

E e Y = , 
2

( | )
i i ei

Var e Y σ= , 
i i

u e⊥  

 

� Usually, 
2

ei
σ   is known and 

2

u
σ  is unknown and has to be estimated 

 

� Aggregating m-area level model leads to linear mixed model of form  
 

   = + +y X Du eββββ    

� ( )1
,...,

T

m
y y=y ; ( )1

,...,
T

m
=X x x ; ( )1

, ,
T

m m
= =D d d I…  ; ( )1

,...,
T

m
u u=u  

� 
2

~ ( , )
u u m

N σ=u 0 IΣΣΣΣ ; ( )1
,...,

T

m
e ee = ; ~ ( , )

e
Ne 0 ΣΣΣΣ  

� { }2
;1

e ei
diag i mσ= ≤ ≤ΣΣΣΣ  and ( )

T

u e
Var = = +y V D DΣ ΣΣ ΣΣ ΣΣ Σ  

� The parameter 
u

ΣΣΣΣ  (or 
2

u
σ ) - referred to as the variance component 

  

� Methods of estimating 
u

ΣΣΣΣ  include ML and REML under normality, the 

method of fitting constants without normality assumption (Rao, 2003) 
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� Let ˆ
u

ΣΣΣΣ  denotes estimate of 
u

ΣΣΣΣ  and we define the plug-in estimator of 

covariance matrix ˆ ˆ T

u e
= +V D DΣ ΣΣ ΣΣ ΣΣ Σ   

 
� Under LMM model, the EBLUE of ββββ  and the EBLUP of u are  

 
1 1 1ˆ ˆ ˆ)

T T− − −x V x x V yβ = (β = (β = (β = (   and 
1 ˆˆˆˆ T

u

− −u D V y X= Σ ( β)= Σ ( β)= Σ ( β)= Σ ( β)      

 
� Using the estimated fixed and random effects, the EBLUP estimate for 

i
Y  is (Henderson, 1975 and Fay & Herriot, 1979)  
 

   
1ˆ ˆˆ ˆˆEBLUP T T T

i i i u
Y

−= + −x d D V y Xβ Σ ( β)β Σ ( β)β Σ ( β)β Σ ( β) 
 

� 
T

i
d  denotes the rows of D and take value 1 for area i and 0 otherwise 

 

� In particular: ˆ ˆˆ ˆEBLUP T T

i i i i i
Y yγ= + −x xβ ( β)β ( β)β ( β)β ( β) , where ( )

1
2 2 2ˆ ˆ ˆ

i u u ei
γ σ σ σ

−

= + is 

shrinkage effect for area i 
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Problem 
� LMM - the fixed effect parameters ββββ  are spatially invariant i.e. the 

expected value of 
i

y  given 
i

x  is the same everywhere in the study area 
 

� However, there are situations where the relationship between y and x 
is not constant over the study area, a phenomenon referred to as 
spatial nonstationarity 

 
 

Solution 
� Geographical weighted regression (GWR) is a method that is widely 

used for fitting data exhibiting spatial nonstationarity (Brunsdon et al., 
1998, Fotheringham et al., 2002)  

 
� We use the GWR concept to fit area level mixed model and consider 

SAE under this model  



 9 

Geographically Weighted Area Level Model 
 
� We define a spatial nonstationary or geographical weighted 

regression version of Fay–Herriot model suitable for such data 
 
� Let 

i
l  denote the coordinates of an arbitrary spatial location (longitude 

and latitude) in area i 
 
� Spatial nonstationary Fay–Herriot model for area i is 

   ( ) ( )
i i i i i

y l Y l e= +  and ( ) ( )
T

i i i i i
Y l l u= +x ββββ    

   

- ( ) ( )
i i

l l= +β β γβ β γβ β γβ β γ  

- ( )1
( ) ( ), , ( )

T

i i p i
l l l= …γ γ γγ γ γγ γ γγ γ γ : spatially correlated vector-valued random 

process, with ( ( ))
i

E l = 0γγγγ  and ( )
1

cov( ( ), ( )) 1 ( , )
k i l j kl i j

l l c L l lγ γ
−

= +  
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- ( , )
i j

L l l  is the spatial distance between locations 
i

l  and 
j

l  

- [ ]
kl

c=C  is unknown positive definite matrix  

 
� A Spatial nonstationary version of linear mixed model  

( )

       

( )

( )

i

T

i i

T T

i i i

i i i

i i

y l u e

u e

l

l

= + +

= + +

x

x x

ββββ

β + γβ + γβ + γβ + γ
 

 
Here,  

- ( )( )
T

i i i
E y l = x ββββ  

- ( ) 2 2
( ) ( , ) ( )

T

i i i i i i u ei
Var y l l l σ σ= + +x W x        

- ( )( ), ( ) ( , )
T

i i j j i i j j
Cov y l y l l l= x W x  

- ( )
1

( , ) ( ( ), ( )) 1 ( , )
i j k i l j kl i j

l l Cov l l c L l lγ γ
−

 = = + W  
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In matrix form 

( )( ) ( )l l l= + ++ + +y Du e u eX X= Z Dβ β γβ β γβ β γβ β γ   

− ( )1
( ) ( ), , ( )

T

m
l y l y l=y …  

− 
1

{ ( ),....., ( )}
p

diag diag=Z x x  is the m pm×  matrix 

− ( )lγγγγ  is  a 1pm×  vector is spatial random effects  

− D is a m m×  diagonal matrix; u is a vector of 1m×  of area random 
effects, e is the vector of sampling errors 

 

− 2
( ) ( ; 1,...., )

T T

eiu
Var diag i m= = + + =γ σV y Z Z D DΣΣΣΣ ΣΣΣΣ  

 

− γ = ⊗CΣ ΩΣ ΩΣ ΩΣ Ω  is  pm pm×  variance –covariance matrix 

− ΩΩΩΩ  is the distance matrix, with ⊗ denoting element-wise multiplication 

and 
2

u u m
σ IΣ =Σ =Σ =Σ =  
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Nonstationary EBLUP (NSEBLUP) 
 

� Replacing the estimated values of variance components { }ˆ ˆ,
u γΣ ΣΣ ΣΣ ΣΣ Σ  of 

{ },u γΣ ΣΣ ΣΣ ΣΣ Σ  , the EBLUE of ββββ  and EBLUPs of ( )lγγγγ  and u are 
1

1 1ˆ ˆ ˆT T
−

− −   =    X V X X V yββββ  ;  

( )1 ˆˆˆˆ( )
T

l
−= −γ Z V y Xγ Σ βγ Σ βγ Σ βγ Σ β  and ( )1 ˆˆˆˆ T

u

−= −u D V y XΣ βΣ βΣ βΣ β  

 
� The NSEBLUP predictor of 

i
Y  

 

( ) ( )1 1ˆˆ ( ) ˆˆˆˆ ˆˆTNSEBLUP T T T

i i i i i

T

uY l
−− −= + −+ γx a Z D V yZ y X a D XVββββ ββββ ΣΣΣΣΣΣΣΣ ββββ  

 

�  ( )0, ,0,1,0, ,0
T

i
=a … …   is 1 m×  vector with 1 in position i-th 
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Parameter Estimation 
 
� We assume a model where C is diagonal, so, assuming that the 

measurement variances 
2

ei
σ  are known, there are p+1 unknown 

parameters, { }2

11 22
, , , ,

u pp
c c cσ …  

 
� In particular, we consider a model where the matrix [ ]

kl
c=C  is 

p
λ=C I , where 0≥λ  reflects the 'intensity' of spatial clustering in 

the data then 

    ( )
1

( , ) ( ( ), ( )) 1 ( , )
i j k i l j i j

l l Cov l l L l lγ γ λ
−  = = +    

W  

� In this case there are just 2 parameters (λ  and 
2

u
σ ) that need to be 

estimated 
 
� REML method  
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MSE Estimation 
 

MSE of EBLUP predictor  
 

� MSE of EBLUP predictor: Prasad and Rao MSE estimator (Prasad 
and Rao,1990 and Datta et al., 2005)  

 
 
MSE of NSEBLUP predictor 
 

� MSE of the NSEBLUP is developed, similar to the approach described 
in Opsomer et al. (2008) for MSE of NPEBLUP 
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 Nonstationary Synthetic Prediction (NSSYN) 
 

� In real applications of SAE domains may be unplanned 
 
� This may result in target small areas with zero sample sizes also 

referred to as out of sample areas 
 
� Under LMM, the synthetic EBLUP (SYN) for out of sample area i  

    

ˆˆ SYN T

i i
Y = x ββββ  

 
� The Nonstationary synthetic EBLUP (NSSYN) for out of sample area i  

   
( )

( ) ( )1

,
ˆˆ

ˆˆ ( )

ˆˆ

T
NSSYN OUT

i i i

T
OUT T OUT

i i

T

OUT

Y l

− −

=

= +        γ

x

x t Z Z V y X

ββββ

ββββ Σ βΣ βΣ βΣ β
  

� ( )0, ,0,1,0, ,0
T

i
=t … …  is 1

OUT
m×  vector with 1 in position i-th, 

1,...,
OUT

i m=  
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Empirical Evaluations 
 

� Two types of simulation studies are carried out 
 

� Model based simulations a synthetic population is generated at 
each simulation run under alternative model specifications and a 
sample is drawn from this population 

 
� Design based simulations are based on realistic population 

structures obtained from real survey data    
 

� The survey data are first used to generate a synthetic population. 
The synthetic population is then kept fixed and within area random 
samples of size equal to the area-specific sizes in the original 
sample, are drawn 
 
 

Performance Measures  
 

� Relative Bias (RB) and Relative Root MSE (RRMSE) 
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Estimators Investigated in Simulation Studies 
 
 

Estimator   Model 

EBLUP FH Model 

SYN   FH Model 

 

NSEBLUP 

 

NS version of FH Model 

NSSYN NS version of FH Model 
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Model Based Simulations 

� Number of small areas m = 49, 100 and 196 
 

� Use area level model to generate data with the procedure similar to 
one describe in Datta et al. (2005) 

 
Stationary process 
 
� Regression parameters are spatially invariant 

- 10 2 ; 1,...,
i i i i

y x u e i m= + + + =  

- ~ [0,1]
i

x U ; ( )2
~ 0, 1

i u
u N σ =  

- ( )2
~ 0,

i ei
e N σ , ( )2

1,...,
ei

i mσ =  taking values 7, 6, 5, 4, 3 for equal 

number of areas, 
i i

u e⊥  

 
- T = 1000 simulations  

 



 19 

Nonstationary process -1 
 
� Regression parameters are spatially variant 

- 
0 1

, 1,...,
i i i i i i

y x u e i mβ β= + + + =   

- 
0

10 0.5
i i i

longitude latitudeβ = + × + ×2  

- { }{ }2

1

2
(1.2 ) (1.2 )i i ilongitude latituds eqrt πβ π= × × ×+4 cos  

. 

� We consider a regular lattice of spatial layout and assume that the 
observations are obtained from a uniform, two-dimensional grid 

consisting of m m×  lattice points between -1 and 1 and with 

( )2 / 1m −  distance between any two neighboring points along the 

horizontal and vertical axes 
 

� ( ) ( ){ }1 2 1 2
, , ; ,

i i
latitude longitude k k k k= = -1,-0.77,-0.55,-0.33,-0.11,0.11,0.33,0.55,0.77,1  

� These m points are arranged in such a way that 
1

k   varies from -1 to 

1 for each given 
2

k  varying from -1 to -1 
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The surface of regression coefficients for the nonstationary process 
(for m = 100)  
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Nonstationary process -2 
 

� Regression parameters are spatially variant 

- ) )( (
T

i

T

i i i i ii
y l u el= + +x x γγγγβ +β +β +β +  

 
- 6=λ   

- ( )2
~ 0, 1

i u
u N σ =  

- ( )2
~ 0,

i ei
e N σ , ( )2

1,...,
ei

i mσ =  taking values 7, 6, 5, 4, 3 for equal 

number of areas, 
i i

u e⊥  
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Model Based Simulation Results (Averaged over small areas) 

Stationary process 
m =49 m =100 m =196 

Indicator EBLUP NSEBLUP EBLUP NSEBLUP EBLUP NSEBLUP 
RB,% -0.13 -0.08 0.01 0.00 0.03 0.07 
RRMSE,% 9.38 9.49 8.91 8.97 8.63 8.65 
CR,% 93 95 90 92 92 94 
TRMSE 1.03 1.04 0.98 0.99 0.95 0.95 
ERMSE 1.06 1.20 0.97 1.04 0.93 0.98 

Nonstationary process-1 
RB,% 2.82 1.40 2.51 0.88 2.62 0.63 
RRMSE,% 17.78 15.61 17.21 14.12 17.01 13.20 
CR,% 94 96 95 96 95 96 
TRMSE 1.56 1.38 1.50 1.25 1.47 1.16 
ERMSE 1.55 1.50 1.51 1.34 1.48 1.22 

Nonstationary process-2 (lambda=6)  
RB,% -0.08 -0.08 0.17 0.14 -0.12 -0.07 
RRMSE,% 14.48 13.58 14.56 13.01 14.25 12.13 
CR,% 95 95 95 95 95 95 
TRMSE 1.61 1.51 1.60 1.43 1.57 1.33 
ERMSE 1.61 1.58 1.59 1.44 1.57 1.35 
TRMSE and ERMSE are true and estimated value of Root MSE  
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Design Based Simulations 

� The dataset comes from the U.S. Environmental Protection Agency's 
Environmental Monitoring and Assessment Program (EMAP) 
Northeast lakes survey (Larsen et al., 2001) 

 
� The variable of interest is Acid Neutralizing Capacity (ANC), an 

indicator of the acidification risk of water bodies 
 
� Elevation: covariate in the fixed part of the model 
 
� Small areas: 113 Hydrologic Unit Codes (HUCs), of which 64 have 

(<5) observations and 27 did not have any observations 
 
� Target: estimation of small area mean of ANC for in (86 areas) and 

out (27 areas) of sample HUCs 
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Design Based Simulations 
 

� Survey data used to generate nonparametrically a synthetic 
population of 21,026 ANC individual values by using a nearest-
neighbour imputation algorithm that retains the spatial structure of 
the observed ANC values in the EMAP sample data (Chandra et al., 
2012) 

 

� A total of 1000 independent random samples of lake locations are 
then taken from the population of 21,026 lake locations by randomly 
selecting locations in the 86 HUCs that containing EMAP sampled 
lakes, with sample sizes in these HUCs set to the original EMAP 
sample size 

 

� Lakes in HUCs not sampled by EMAP are also not sampled in the 
simulation study 

 

� ANOVA test of Brundson et al. (1999) rejected the null hypothesis 
of stationarity of the model parameters when the model was fitted to 

the EMAP data  ⇒⇒⇒⇒ model parameters are nonstationary 
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 Design Based Simulation Results  
Summary of across areas distribution (%) 

Predictor Indicator 
Min Q1 Median Mean Q3 Max 

 

86 sampled HUCs 
EBLUP RB -59.84 -18.02 3.24 -3.32 8.52 26.05 
 RRMSE 4.89 25.77 30.77 33.69 40.59 68.36 
        
NSEBLUP RB -60.11 -10.72 -0.71 -2.51 8.53 38.31 
 RRMSE 4.88 17.8 24.3 26.9 33.19 61.07 
        

 

27 non-sampled HUCs 
SYN RB -81.06 -59.89 -46.03 -22.54 1.95 184.93 
 RRMSE 6.23 33.39 53.09 50.82 62.08 185.51 
        
NSSYN RB -68.95 -34.44 -8.78 -11.48 7.79 43.76 
 RRMSE 13.06 18.82 29.82 32.79 45.79 69.12 
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Region-specific values of actual RMSE (solid line, ●) and estimated Root 
MSE (dashed line, ○) for the EMAP data 
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Concluding Remarks 
 

� We examine a nonstationary extension of the popular EBLUP, which 
we refer to as the NSEBLUP  

 
� The empirical results show that the proposed NSEBLUP can be used 

for efficiently borrowing strength over space in the presence of 
spatial nonstationarity in the data 

 
� The NSEBLUP can significantly improve synthetic estimation for out 

of sample areas 

 
� The MSE of the proposed NSEBLUP works well 
 

� We also explored a parametric bootstrap approach for MSE 
estimation 
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� For small number of areas, bootstrap approach based MSE estimator 
appears to be slightly more stable than the analytical MSE 

 
� The nonparametric spline-based models (Opsomer et al., 2008; 

Giusti et al., 2012) and spatial models that assume dependence 
between areas via simultaneous autoregression (Pratesi and Salvati, 
2008 and Singh et al., 2005) are other alternative to incorporate the 
spatial structure of the data in small area models 

 
� We also examined the performance of SAE methods based on these 

two models, i.e., NPEBLUP and SEBLUP respectively 
 
� In our empirical evaluations, the proposed NSEBLUP emerged as best 

performing method of SAE when compared with NPEBLUP and 
SEBLUP 
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