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Introduction

If data values are associated with probability of selection,
non-SRS sample designs can yield biased estimates of
population quantities such as the population mean.
Sample weights equal to inverse of probability of selection
(wi = π

−1
i ) often used to reduce or remove bias.

Ex: Estimate population total T = ∑
N
i=1 yi by T̂ = ∑i∈s wiyi

(Horvitz and Thompson 1952).

Use of weights usually increases estimator’s variance.

Var(w) large
n small
Corr(y ,w) weak


Increase in
variance over-
whelms bias

→ increased MSE

Small n might be a particularly important issue in small
area estimation.
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Weight Trimming (“Winsorization”)

Common approach to dealing with overly variable
estimators in weighted data is weight trimming or
winsorization (Potter 1990, Kish 1992, Alexander et al.
1997).

Weights larger than some value w0 are fixed as w0. with the
remaining weights are adjusted upward by a constant so
that the trimmed and untrimmed weighted sample sizes are
equal.
Introduce bias to reduce variance⇒ overall reduction in
MSE.
Calibration literature (Deville and Sarndal 1992, Folsom
and Singh 2000) has developed methods for bounding
design weights in generalized poststratification and raking
procedures, but choice of bound is still arbitrary.
Reflects a traditional design-based approach to survey
inference.
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Design-based vs. model-based approach(Pfefferman
1993)

Design-based Model-Based
Treat yi as fixed and sampling yi ∼ f (yi ;θ).
indicator Ii as random.

Estimate population parameters Estimate “superpopulation”
T = ∑

N
1 yi or Y = T/N. parameters θ .

Use weighted estimators for Incorporate sample design,
point estimates; develop including information in
∼unbiased estimates of variance weights, into model.
accounting for sample design
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Finite Population Bayesian Inference

Focus on population quantities of interest Q(Y ): population
means Y ; population least-squares regression slopes
minB0,B1 ∑

N
i=1(Yi1−B0−B1Yi2)

2.
Make inference about Q(Y ) from marginal posterior
predictive distribution (Ericson 1969, Rubin 1983, Little
1993):

p(Q(Y ) | y)∝

∫ ∫ ∫
f (Q(Y ) | θ ,ψ, I,y)f (I | θ ,ψ,y)f (y | θ ,ψ)p(θ ,ψ)dθdψdI

If ψ,θ a priori independent, ψ governs I only, and I ⊥ Y−y ,
then

p(Q(Y ) | y) ∝

∫
f (Q(Y ) | θ ,y)f (y | θ)p(θ)dθ

∫ ∫
f (I | ψ,y)p(ψ)dψdI

∝ f (Q(Y ) | θ ,y)p(θ | y)dθ

These conditions require sufficiently detail in the likelihood
and prior model structure to accommodate the sample
design.
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Example: estimating a population mean under
one-stage unequal probability sampling

Stratify by probability of selection: P(Ihi = πh), wh = 1/πh,
h = 1, ...,H.

If all probabilities differ, H = n, or can collapse observations
in strata with approximately equal weights.

Y = N−1
∑h NhY h = N−1

∑h Nh

[
nh
Nh

yh +
Nh−nh

Nh
Y nobs,h

]
E(Y | y) = N−1

∑h Nh

[
nh
Nh

yh +
Nh−nh

Nh
E(Y nobs,h | y)

]
Assume yhi ∼ N(µh,σ

2
h ), p(µh,σ

2
h ) ∝ 1 Then

E(Y | y) = N−1
∑
h

Nh

[
nh

Nh
yh +

Nh−nh

Nh
E(µh | y)

]
=

N−1
∑
h

Nh

[
nh

Nh
yh +

Nh−nh

Nh
yh

]
= N−1

∑
h

Nnyh
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Example: estimating a population mean under
one-stage unequal probability sampling

If disproportional stratified design,

E(Y | y) = ∑
h

∑
i

whiyhi/∑
h

∑
i

whi , whi ≡ wh = Nh/nh

V (Y | y)=∑
h

P2
h (1−fh)

2V (µh | y)=∑
h

P2
h (1−fh)

2 s2
h

nh
, Ph =Nh/N, fh =nh/Nh

For more general design, could obtain via simulation by drawing
Ph ∼ DIR(n∗1, ...,n

∗
H), n∗h = n ∗ (nhwh)/∑h(nhwh),

µh | y ∼ tnh−1(y ,s2/nh) and Y | y by computing
∑h Ph(fhyh +(1− fh)µh).
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Model-based winsorization: weight smoothing

Models equivalent to fully weighted estimators assume
total separation of weight stratum means, or more
generally interactions between the weight strata and the
model parameters of interest (Little 1993; Elliott 2007).
A way to reduce the impact of highly variable weights is to
model the weight strata/interactions as random effects
(“weight smoothing” models) (Lazzaroni and Little 1998,
Elliott and Little 2000):

yih | µh,σ
2 ∼ N(µh,σ

2)

µ | φ ,D ∼ N(φ ,D)

where φ ,σ2,D have non-informative prior distributions.
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Model-based winsorization: weight smoothing

Under these assumptions,

E(Y | y) = ∑
h
[nhyh +(Nh−nh)µ̂h]/N+

where µ̂h = E(Y h | y) = E(µh | y).
This model allows of shrinkage of the means across weight
strata, with the shrinkage a function of the data and model
structure.

Focuses on shrinking estimates of poorly estimated
interaction terms, rather than shrinking the weights
Contrast with Beaumont (2008), which focuses on
estimating weights as a function of outcome.

10 / 34



Model-based winsorization: weight smoothing

Structure can be added through either the mean or the
variance components (Elliott and Little 2000):
Model φ D
Exchangable random µ1H τ2IH
effects (XRE)
AR1 µ1H Djk = τ2{ρ |j−k |}

Linear

 1 1
...

...
1 H

( α

β

)
τ2IH

Nonparameteric f (h) 0
mean

f (h) is a twice differentiable smooth function that minimizes the
residual sum of squares plus a roughness penalty:

min
f (h)

∑
h,i
(yhi − f (h))2 +λ

∫
(f (2)(u))2du
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Model-based winsorization: weight smoothing

Under this formulation:

µ̂ = X β̂ +Zû,

β̂ = (X ′V̂−1X )−1X ′V̂−1y

û = ĜZ ′V̂−1(y −X β̂ )

Obtain estimates of G and σ2, and thus of β and u, by ML
or REML methods.
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Model-based winsorization: weight smoothing

Can be extended to exponential family distributions, linear
and generalized linear models (Elliott 2007). Indexing the
inclusion stratum by h we have

g(E [yhi | β h]) = xT
hiβ h

(β T
1 , . . . ,β

T
H)

T | β ∗,G ∼ NHp (β
∗,G)

p(φ ,β ∗,G) ∝ p(ζ )

Target population parameter of interest B is slope that
solves the population score equation UN(B) = 0 where

UN(β ) =
N

∑
i=1

∂

∂β
log f (yi ;β ) =

H

∑
h=1

Nh

∑
i=1

(yhi −g−1(µi(β )))xhi

V (µhi(β ))g′(µhi(β ))
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Model-based winsorization: weight smoothing

Results of approach (Elliott and Little 2000) showed that
simple models (like XRE and LIN) could have substantial
efficiency gains, but were at risk of being overly biased
when "signal" of relationship between outcome and
probability of selection approximately equal to residual
variance.
More complex models (AR1, NPAR) had smaller efficiency
gains, but better balanced the bias-variance tradeoff.
Extension to regression modeling (Elliott 2007) showed
smaller efficiency gains, but allowed simpler models to be
more “robust”.
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Deriving implied weights from model-based
winsorization

Note that, in the linear model setting where fh ≈ 0 for all h, the
posterior mean of the population mean is given by ∑h Ph µ̂h,
where µ̂h is obtained from the vector

µ̂ = X β̂ +Zû =

X (X ′V−1X )−1X ′V−1y +ZGZ ′V−1(y −X (X ′V−1X )−1X ′V−1y) =
[X (X ′V−1X )−1X ′V−1 +ZGZ ′V−1(I−X (X ′V−1X )−1X ′V−1]︸ ︷︷ ︸

A

y

where y consists of the stacked elements of yh.
Thus we can compute the posterior mean of the population
mean as a reweighted mean estimator, with

ywt = ∑
h

Ph µ̂h = N−1
∑
h

Nh

H

∑
m=1

Ahmym = N−1
∑
h

∑
i

w∗hyhi

where w∗h = Nh
nh

∑
H
m=1 Ahm = wh ∑

H
m=1 Ahm.

For exponential family, use A matrix resulting from fit to
g(E [y ]) = X β̂ +Zû.
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Model-based winsorization in small area estimation

Proposed two-step approach:
1. Use model-based approach to develop “data driven” weight

trimming estimator for outcome of interest.
2. Use standard design-based approach for weighted small

area estimates, replacing original weights with winsorized
weights.

Hybrid of design- and model-based estimation.

16 / 34



Small area estimation using design weights (Prasad
and Rao 1999)

Begin with standard components-of-variance model:

yij = µ +νi +eij , j = 1, ...,ni , i = 1, ...,m

E(νi) = E(eij) = 0,V (νi) = σ
2
ν ,V (eij) = σ

2

νi ⊥ eij

Fully weighted direct estimator given by y iw = ∑j w̃ijyij
where w̃ij = wij/∑j wij are the case weights normalized to
sum to 1 within a small area.
Prasad and Rao develop “pseudo” EBLUB estimators:

y iw = µ +νi +eiw , V (eiw ) = δi = σ2
∑j w̃2

ij
BLUP estimator of θi = µ +νi given by µ̂w = ∑i γiw y iw/∑i γiw

where γiw = σ2
ν

σ2
ν +δi

.

Estimate σ2 by ∑i ∑j (yij−y i )
2

n−m

Estimate σ2
ν by ∑i ni (y i−y)2−(m−1)σ̂2)

n−(∑i n2
i )/n
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Small area estimation using design weights (Prasad
and Rao 1999)

Mean square error of pseudo BLUP estimator given by

MSE(θ̂i ;σ
2
ν ,σ

2) = (1− γiw )σ
2
ν

(
1+

(1− γiw )

∑i γiw

)
Estimating using predictors of σ2

ν and σ2 leads to
underestmation of MSE; add second-order correction:

ˆMSE(θ̂i ; σ̂2
ν , σ̂

2) = MSE(θ̂i ; σ̂2
ν , σ̂

2)+

γ̂iw (1− γ̂iw )
2/σ̂

2
ν

{
V̂ (σ̂2

ν )+2(σ̂2
ν /σ̂

2) ˆCov(σ̂2
ν , σ̂

2)+(σ̂2
ν /σ̂

2)2V̂ (σ̂2
ν )
}
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Simulation Study Design

Generate population of size Mi , from multinomial size 1
with probability ωi , i = 1, ...,20, where ωi ∼ DIR(1,2, ...,20).
Let Wij = i be the individual-level small area identifying
variable, j = 1, ...,Mi . Then

Yij = β0 +∑
i

β1i I(Wij = i)+ f (πij)+ εij

where β0 = 0, βi ∼ N(0,σ2
ν ), f (πij) is a function of the

probability of selection, and εij ∼ N(0,1).
Binomial sampling, with probability of selection
πij =

α0+α1Zij
1+α0+α1Zij

, where Zij is a fully-observed covariate.
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Simulation Study Design

We considered a 2×2×2×2 study design:
σ2

ν = 1 (moderate within-small-area correlation), σ2
ν = 4

(high within-small-area correlation)
(α0 =−4,α1 = .5) (moderate variability in sample weights),
(α0 =−5,α1 = 1.5) (large variability in sample weights)
Zij ∼ N(−2,2) (selection probability unrelated to small

area), Zij ∼ N
(
−Wi
10 , 21−Wi

10

)
(selection probability higher in

small areas with smaller population sizes)
f (πij) = 0 (selection probability unrelated to outcome),

f (πij) = 2
(

πij−min(πij )

max(πij )−min(πij )

)3
(selection probability higher for

larger values).
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Simulation Study:Population Plot of Weight vs.
Outcome
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Simulation Study Design

For each simulation, we compute four SAEs:
Fully-weighted
Crude-trimmed to a maximum value of 3 times the mean
Windsorized weights based on exchangable model (XRE)
Windsorized weights based on nonparametric regression
model (NPAR)

22 / 34



Simulation Study:Median SAE Bias
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Simulation Study:Median SAE Relative MSE
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Simulation Study:Median SAE Ratio of Est. MSE to
True MSE
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Simulation Study: Discussion

Large reduction in MSE relative to fully weighted model for
exchangable model when variance of weights in high or
weights unrelated to outcome.

Extremely large reduction in MSE for exchangable model if
outcome also independent of weights.
MSE reduction using crude trimming estimator, but usually
less substantial
Less reduction in MSE for exchangable model when
variance of weights in lower if weights vary by SAE

XRE robust: only slight increase in MSE relative to fully
weighted model if variance of weights is low and weights
unrelated to outcome.
NPAR has no MSE gain relative to fully-weighted model.
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Simulation Study: Discussion

When weight is not associated with the outcome, the MSE
estimator slightly upwardly biased (∼ 2%).
When weight is associated with the outcome and the small
areas, the MSE estimator is moderately upwardly biased
(∼ 20%).
When weight is associated with the outcome but not the
small areas, the MSE estimator is severely upwardly
biased (∼ 100%).
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Simulation Study: Discussion

Replace unweighted estimators of σ2 and σ2
ν with

weighted equivalents σ2
w =

∑i ∑j wi j(yij−y iw )2

nw−m and

σ2
νw

= ∑i niw (y iw−yw )2−(m−1)σ̂2
w )

nw−(∑i n2
iw )/nw

for niw = ∑j wij and nw = ∑i niw .
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Simulation Study:Median SAE Ratio of Est. MSE to
True MSE
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Simulation Study: Discussion

Removes slight and moderate upward bias in MSE
estimator when weight is not associated with the outcome
or when associated with the outcome and the small areas
Substantially reduces bias in MSE estimator when weight
is associated with the outcome but not the small areas
(XRE model almost unbiased; crude trimming model
substantially downward biased).
Modest downward bias (5-10%) in MSE when is highly
variables and not associated with the outcome.
Consider Jiang and Lahiri (2006) variance estimator for
better second-order properties.
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Summary

When outcome is associated with probability of inclusion,
use of sampling weights can reduce bias.
When weights are highly variable, bias reduction might be
“outweighed” by increased variance, especially if outcomes
are weakly associated with probability of inclusion.

Might be especially acute in SAE, with small samples and
highly variable weights.

Use of “data-driven” weight trimming via weight smoothing
allows balancing of bias-variance tradeoff in a two-stage
setting:

Model to determine trimmed weights “tuned” to the SAE
outcome of interest, then application of trimmed weights in
“standard” model-assisted setting.
Evidence that simpler weight smoothing models are
sufficiently robust, while more complex weight smoothing
models simply mimic fully-weighted approach.
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Future Work

Prasad and Rao not only method to incorporate design into
SAE: quantile regression approach of Chambers and
Tzavidis (2006) and extensions could also use windsorized
weights.
When (linear) model for SAE is used, iterative application
of calibration weighting scheme such as generalized
regression (GREG) could be used to obtain “implied”
weights.

Begin with initial design weights w (0)
h .

Update as follows:

w (t+1)
h = w (t)

h (1+(B̂w∞ − B̂w t )T (t)
u u(t)

h )

where u(t)
h =

[
∑h w (t)

h ∑
nh
i=1 xhixT

hi

]−1
∑

nh
i=1 xhiyhi ,

T (t)
u = ∑h w (t)

h u(t)
h (u(t)

h )T , and B̂w∞ is the windsorized
estimator of the population slope B relating covariates xi to
the mean of yi : B = minβ ∑

N
i=1(yi −xT

i β )2.
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Future Work

An alternative unified, fully-model based approach incorporates
the weights directly into the analysis (Gelman 2006).

Use flexible model relating probability of selection to
outcome (Zheng and Little 2005, Chen et al. 2010) as
standard SAE model with fixed effect predictors.

yij = β0 +
3

∑
k=1

βk π
3
ij

m

∑
l=1

bi (πij −κl )
3
++νi +eij , j = 1, ...,ni , i = 1, ...,m

bl ∼ N(0,τ2), νi ∼ N(0,σ2
ν ), eij ∼ N(0,σ2)

bl ⊥ νi ⊥ eij

where κl are prespecified knots for a cubic P-spline
regression.

Assumes no interaction between weight and small area
Assumes no interaction with an additional covariates
incorporated in SAE model

Interaction can be incorporated but typically data will not be
sufficient in small area to estimate (Huang 2011).
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