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INTRODUCTION

Unbalanced nested-error regression models arise often in two-stage sample surveys. Be-

sides the noise, a source of variation is added to explain the correlation among observa-

tions within clusters, or subjects, and to allow the analysis to borrow strength from other

clusters.

Such nested-error regression models are particular cases of general linear mixed models,

which often form the basis for inference about small-area means or subject-specific values.

In this talk we propose a new, nonparametric bootstrap technique for estimating the mean-

squared error of predictors of mixed effects.
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INTRODUCTION (2)

The new method has several attractive properties.

• It does not require specific distributional assumptions about error distributions.

• It produces positive, bias-corrected estimators of mean-squared prediction errors.

• It is easy to apply.

Although our emphasis is on small-area prediction, our methodology is equally useful for

other applications, such as estimating subject- or cluster-specific random effects.
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LITERATURE REVIEW

As indicated in the Introduction, one of the advantages of our approach is that it pro-

duces positive, bias-corrected estimators of mean-squared prediction errors. Bell (2001)

and Chen and Lahiri (2002) have discussed the issue of negativity.

Kackar and Harville (1984) and Harville and Jeske (1992) studied various approximations

to the mean-squared prediction error of the empirical BLUP, assuming normality in both

stages. Prasad and Rao (1990) pointed out that if unknown model parameters are replaced

by their estimators, then significant under-estimation of true mean-squared prediction er-

ror can still result, and introduced second-order correct mean-squared error estimators

under normal models.

Datta and Lahiri (2000) extended the Prasad–Rao approach to cases where model parame-

ters are estimated using maximum likelihood, or restricted maximum likelihood, methods.

Das et al. (2001) gave rigorous proofs of these results under normality. Bootstrap meth-

ods in parametric settings have been suggested, for this problem, by Booth and Hobert

(1998) and Lahiri (2003a), for example. See also a review paper by Lahiri (2003b). Jiang et
al. (2002) proposed an elegant, jackknife-based, parametric approach to bias correction of

the mean-squared error estimator.
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MODEL

We observe data pairs (Xij, Yij) generated by the model

Yij = µ +XT

ijβ + Ui + sij Vij , for 1 ≤ i ≤ n and 1 ≤ j ≤ ni ,

where each ni ≥ 2, Yij and µ are scalars, Xij is an r-vector, β is an r-vector of unknown

parameters, the scalar sij is known (generally as a function of Xi1, . . . , Xini), the Uis and

Vijs are totally independent, the Uis are identically distributed, the Vijs are identically dis-

tributed, E(Ui) = E(Vij) = 0 for each i, j, E(U2

i ) = σ2U and E(V 2

ij) = σ2V .

All inference will be undertaken conditionally on X , which denotes the set of explanatory

data Xij for 1 ≤ i ≤ n and 1 ≤ j ≤ ni.

The model (2.1) is a generalisation of the unbalanced nested-error regression model (Stukel

and Rao, 1997; Rao, 2003), and is commonly used to model two-level clustered data. See

also Battese et al. (1988), Datta and Ghosh (1991) and Rao and Choudhry (1995).
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MODEL (2)

The model (2.1) arises through noise, in terms of the Vijs, being added to a value,

Θi = µ +X ′
iβ + Ui ,

of the small-area modelling “parameter.” Here, X i = n−1

i

∑
j Xij.

Our objective is to make inference about estimators of the performance of predictors of the

small-area mean Θi, or even just the random effect Ui (in the case µ = 0 and β = 0).
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PREDICTORS

Put X̄i = a−1

i

∑
j s

−2

ij Xij and Ȳi = a−1

i

∑
j s

−2

ij Yij, where ai =
∑

j s
−2

ij . The best linear

unbiased predictor of Θi is

ΘBLUP

i = µ +X ′
iβ + ρi

(
Ȳi − µ− X̄ ′

iβ
)
,

where ρi = σ2U/(σ
2

U + a−1

i σ2V ).

Replacing µ and β by their weighted least-squares estimators, µ̃ and β̃ say, we obtain an

empirical version of ΘBLUP

i :

Θ̃BLUP

i = µ̃ +X ′
iβ̃ + ρi

(
Ȳi − µ̃− X̄ ′

iβ̃
)
.
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PREDICTORS (2)

Here,

µ̃ =

( n∑

i=1

1Ti W
−1

i 1i

)−1 n∑

i=1

1Ti W
−1

i

(
Yi − XT

i β̃
)
,

β̃ =

{ n∑

i=1

(
Xi − 1iX̄

)
W−1

i

(
Xi − 1iX̄

)T
}−1 n∑

i=1

(Xi − 1iX̄)W−1

i (Yi − Ȳ 1i) ,

where 1i is the vector of 1s of length ni, Xi denotes the r × ni matrix with Xij as its jth

column, Wi is the ni× ni matrix of which the (j1, j2)th component is σ2U + δj1j2 s
2

ij1
σ2V , δj1j2 is

the Kronecker delta, Yi is the ni-vector with jth component Yij, and

X̄ =

( n∑

i=1

1Ti W
−1

i 1i

)−1 n∑

i=1

XiW
−1

i 1i ,

Ȳ =

( n∑

i=1

1Ti W
−1

i 1i

)−1 n∑

i=1

Y T

i W
−1

i 1i

denote an r-vector and a scalar, respectively.
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PREDICTORS (3)

A practical form of Θ̃BLUP

i is

Θ̂BLUP

i = µ̂ +X ′
iβ̂ + ρ̂i

(
Ȳi − µ̂− X̄ ′

iβ̂
)
,

where µ̂, β̂ and ρ̂i differ from µ̃, β̃ and ρi, respectively, in that σ2U and σ2V are replaced by

estimators, σ̂2U and σ̂2V say (see Stukel and Rao, 1997). We wish to construct a bias-corrected

estimator of the mean-squared prediction error,

MSEi = E
{(

Θ̂BLUP

i − Θi

)2 ∣∣∣ X
}
. (1)
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FORMULA FOR MEAN SQUARED ERROR

Recall the formula for MSEi:

MSEi = E
{(

Θ̂BLUP

i − Θi

)2 ∣∣∣ X
}
. (1)

It can be proved that

MSEi = ψ0(ξ0) + n−1 ψ1(ξ1) + O
(
n−2

)
,

where ξ0 = (σ2U , σ
2

V ), ξ1 = (σ2U , σ
2

V , EU
4, EV 4),

ψ0(ξ0) =
σ2U a

−1

i σ2V
σ2U + a−1

i σ2V
,

ai =
∑

j s
−2

ij , and ψ1 is a known, smooth function.

Crucially, both ξ0 and ξ1 depend on the distributions of U and V only through their second

and fourth moments.

Although in principle ψ1 is known, it is generally a very complex function of the Xijs and

sijs, and so estimating MSEi by M̃SEi = ψ0(ξ̂0) + n−1 ψ1(ξ̂1), for estimators ξ̂0 and ξ̂1, is not

attractive. We suggest instead a bootstrap approach where ξ1 is estimated implicitly.
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USING THE BOOSTRAP TO ESTIMATE MEAN SQUARED ERROR

In a bootstrap approach to this problem it is sufficient to resample from empirical “ap-

proximations” to the distributions of U and V that have first, second and fourth moments

which are root-n consistent for the corresponding moments of U and V .

In particular, we do not need the distributions from which we resample to actually be

consistent for the distributions of U and V .

This is a variant of the moment-matching, or “wild,” bootstrap method, which almost in-

variably addresses first, second and third, rather than first, second and fourth, moments.

Examples of applications of the moment-matching bootstrap can be found in work of Fan

and Li (2002), Flachaire (2002), Domı́nguez and Lobato (2003), Prášková (2003), Kauer-

mann and Opsomer (2003), Li et al. (2003) and González Manteiga et al. (2004).
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MOMENT MATCHING BOOTSTRAP ALGORITHM

Given z2, z4 > 0 with z2
2
≤ z4, let D(z2, z4) denote the distribution of a random variable

Z, say, for which E(Z) = 0 and E(Zj) = zj for j = 2, 4. Let D denote a class of such

distributions, with exactly one member D(z2, z4) for each pair (z2, z4).

Given estimators σ̂2U and σ̂2V of σ2U and σ2V , for example those given by Stukel and Rao

(1997), as well as estimators γ̂U and γ̂V of γU = E(U4) and γV = E(V 4), satisfying the stan-

dard moment conditions σ̂4U ≤ γ̂U and σ̂4V ≤ γ̂V , draw resamples U∗ = {U∗
1
, . . . , U∗

n} and

V∗ = {V ∗
ij : 1 ≤ i ≤ n, 1 ≤ j ≤ ni} by sampling independently from the distributions

D(σ̂2U , γ̂U) and D(σ̂2V , γ̂V ), respectively, the distributions being the uniquely determined

members of D.

Mimicking the model given earlier, define

Y ∗
ij = µ̂ +XT

ij β̂ + U∗
i + sij V

∗
ij , for 1 ≤ i ≤ n and 1 ≤ j ≤ ni .
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MOMENT MATCHING BOOTSTRAP ALGORITHM (2)

Let Z and Z∗ denote the set of all pairs (Xij, Yij), and the set of all pairs (Xij, Y
∗
ij), respec-

tively. Using the data in Z∗, compute the bootstrap versions µ̂∗, β̂∗, σ̂∗U , σ̂∗V , γ̂∗U , γ̂∗V and

Θ̂∗BLUP
i of µ̂, β̂, σ̂U , σ̂V , γ̂U , γ̂V and Θ̂BLUP

i , respectively, and put

M̂SEi = E
{(

Θ̂∗BLUP
i − Θ∗

i

)2 ∣∣∣ Z
}
; (2)

compare (1). In (2), Θ∗
i = µ̂ +X ′

iβ̂ + U∗
i .

The quantity M̂SEi in (2) is our basic estimator of MSEi. It can be shown to have bias of

order n−1.
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BIAS-CORRECTING M̂SEi

To bias-correct M̂SEi we use the double bootstrap, as follows.

Conditional on U∗ and V∗, draw resamples {U∗∗
1 , . . . , U

∗∗
n } and {V ∗∗

ij : 1 ≤ i ≤ n, 1 ≤

j ≤ ni} by sampling independently from the distributions D{(σ̂∗U)
2, γ̂∗U} and D{(σ̂∗V )

2, γ̂∗V },

respectively.

Let

Y ∗∗
ij = µ̂∗ +XT

ij β̂
∗ + U∗∗

i + sij V
∗∗
ij , for 1 ≤ i ≤ n and 1 ≤ j ≤ ni ,

and from the data pairs (Xij, Y
∗∗
ij ), compute the double-bootstrap version Θ̂∗∗BLUP

i of Θ̂BLUP

i .

Define

M̂SE
∗

i = E
{(

Θ̂∗∗BLUP
i − Θ∗∗

i

)2 ∣∣∣ X ,Z∗
}
,

where Θ∗∗
i = µ̂∗ +X ′

iβ̂
∗ + U∗∗

i . Then, M̂SE
∗

i is the direct bootstrap analogue of M̂SEi.
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BIAS-CORRECTING M̂SEi (2)

The bias of M̂SEi is estimated by

b̂iasi = E
(
M̂SE

∗

i

∣∣ Z
)
− M̂SEi .

A simple bias-corrected estimator is

M̂SE
bc

i = M̂SEi − b̂iasi = 2 M̂SEi − E
(
M̂SE

∗

i

∣∣ Z
)
.

Other approaches can also be used.
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DISTRIBUTIONS D(z2, z4)

The simplest example of an appropriate distribution D(1, p−1) of a random variable Z is

perhaps the three-point distribution,

P (Z = 0) = 1− p , P
(
Z = ±p−1/2

)
= 1

2
p ,

where 0 < p < 1. Here, E(Z) = 0, E(Z2) = 1 and E(Z4) = p−1. Therefore we may take

D(z2, z4) to be the distribution of z
1/2
2
Z when p = z2

2
/z4.

The Pearson family of distributions also has potential for fitting the first four moments.

If (a) the first and third moments are zero, (b) the second is z2 = 1, and (c) the fourth

is z4 > 3, implying that tails are heavier than those of the normal distribution, then the

Pearson family distribution is rescaled Student’s t. The number of degrees of freedom, r,

is not necessarily an integer, and is given by z4 = 3(r − 2)/(r − 4).

Either approach is effective in practice. While Student’s t can be employed only when

kurtosis is positive, this is the case in many practical situations.
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THEORETICAL AND NUMERICAL PROPERTIES

Details are given in:

HALL, P. AND MAITI, T. Nonparametric estimation of mean-squared prediction error in

nested-error regression models. Ann. Statist. 34, 1733–1750.

The estimators M̂SE
bc

i and b̂iasi converge at optimal rates, and in particular, M̂SE
bc

i −MSEi
and b̂iasi − biasi are both of order n−2, as n→ ∞.

Numerical properties reflect this performance. In particular, in the models we treated,

while the naive estimator of mean squared error suffers from substantial under-estimation,

in the range 8% to 20%, the average relative bias of the bootstrap approach varies from less

than 5% to less than 10% in the same setting. (The naive estimator of mean squared error is

ψ0(ξ̂0), where ξ̂0 is obtained by replacing σ2U and σ2V by σ̂2U and σ̂2V , respectively, in a formula

given earlier for ξ0.)
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