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Motivation
Compositions

Area 1 . . . J Total

1 Y1·
2 Y2·
3 Y3·

Yaj

. . . . . .

A YA·
Total Y·1 . . . Y·J Y··

Target: Estimate the within area cell counts Yaj , using proxy
information and fixed row/column margins.
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Motivation

Two different (fixed-effects) approaches to this problem are
considered:

B Structure Preserving Models: Long tradition in SAE.
Assumptions about the relationship between the interactions
of two compositions in the log-linear scale. (Proxy information
is required).

B Regression (Generalized Linear) Models: Multinomial-Logistic:
Assumptions about the relationship between the log-odds with
respect to a reference category and a set of covariates. (Proxy
information can be used as covariate).
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Motivation

In this work, we:

1 Introduce a generalization of the Structure Preserving
approach, covering the SPREE and GSPREE models and also
the logit-multinomial (using proxy information) as particular
cases.

2 Use data from 2001 and 2011 Population Censuses in England
to compare the different models in terms of their Prediction
Error.

3 Show some ongoing work on a model using a mapping matrix
between the proxy and desired compositions, which allows to
incorporate auxiliary information at the aggregate level.
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Outline

1 Structure Preserving Models

2 Model using a Mapping matrix
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Structure Preserving Models

Denote by θXaj = Xaj/Xa· an auxiliary composition of exactly the same

dimension as θYaj = Yaj/Ya·, its log-linear representation given by:

γXaj = αX
0 + αX

a + αX
j + αX

aj

where γXaj = log θXaj , αX
0 = γ̄X·· , αX

a = γ̄Xa· − γ̄X·· , αX
j = γ̄X·j − γ̄X·· and

αX
aj = γXaj − γ̄Xa· − γ̄X·j − γ̄X·· .

The log-linear representation satisfies the constraints:∑
a α

X
a = 0,

∑
j α

X
j = 0,

∑
a α

X
aj =

∑
j α

X
aj = 0. Analogous for θYaj .

The modelling process is focused on the relationship between αY
aj and αX

aj .

Marginal constraints such as
∑

a Ŷaj = Y·j for j = 1, . . . , J and
∑

j Ŷaj = Ya· for

a = 1, . . . ,A can be considered using IPF without modifying the parameter

estimates. Proxy information (not just covariates) is required.
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Structure Preserving Models

In the context of SAE, the following Structure Preserving models
have been used:

1. Given
{
θXaj

}
, {Y1·, . . . ,YA·}:

Synthetic Estimator: Adapted from Gonzalez & Hoza (1978),

Ŷaj = θXajYa·

The underlining model is αY
j = αX

j , α
Y
aj = αX

aj .

The estimated composition is a rescaled version of the
auxiliary composition.
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Structure Preserving Models

2. Given
{
θXaj

}
, {Y1·, . . . ,YA·} , {Y·1, . . . ,Y·J}:

SPREE: Purcell & Kish (1980) use IPF to fit the two margins,

Ŷ
(1)
aj = θXajYa· , Ŷ

(2)
aj =

Ŷ
(1)
aj

Ŷ
(1)
·j

Y·j , ...

until convergency is achieved. This estimator minimizes the
distance between the compositions X and Ŷ satisfying the
marginal constraints. The underlining model is αY

aj = αX
aj .
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Structure Preserving Models

3. Given
{
θXaj

}
, {Y1·, . . . ,YA·} , {Y·1, . . . ,Y·J} and an estimated

{
θYaj

}
:

Generalized Linear Structural Model (GSPREE): Zhang &
Chambers (2004) propose the model

αY
aj = βαX

aj .

β can be estimated using ML under the multinomial
distribution, when expressing the model as:

µYaj = λj + βµXaj

for µaj = log θaj − 1
J

∑
l

log θaj = αj + αaj .

Given the sum-zero constraint of the αj , the λj are nuisance
parameters with no practical interest.
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Extension of the Structure Preserving approach

All the previous models can be seen as particular cases of the more
general model: 

αY
a1

...

αY
aJ

 = Bβ B


αX
a1

...

αX
aJ



Where BJ×J = I− J−111′ and βJ×J = {βjk} contains all the
parameters.
The multiplication on left and right by B ensure that the sum zero
constraints are satisfied by the predicted αY

aj , as well as the
uniqueness of G = BβB. Denoting by {gjk} the components of G
we can write,

αY
aj =

∑
k

gjkα
X
ak .

As in the GSPREE, the estimation of β can be done using ML
under the multinomial distribution writing the model as
ηY
a = λ + Bβ BηX

a .
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Extension of the Structure Preserving approach

Some particular cases:

a) SPREE: β = I

αY
aj = αX

aj −
1

J

∑
k

αX
ak

b) GSPREE: With parameter φ, β = φI

αY
aj = φαX

aj − φ
1

J

∑
k

αX
ak
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Extension of the Structure Preserving approach

c) Logit-Multinomial Model: The model with J-1 parameters

ηYaj = γj + φjη
X
aj

for ηaj = log [θaj/θaJ ], can be written as a structural model in
the form

αY
a = B(J)βBαX

a

for B(J) the J×(J-1) matrix resulting of dropping the column
J from B and β a (J-1)×J matrix defined as

β =
[
Diag

{
~β(J)

} ∣∣∣ − ~β(J)

]
for ~β(J) a vector of J-1 parameters (The category J doesn’t
have a free parameter).

12 / 22



Extension of the Structure Preserving approach

d) GSPREE with category-specific (J) parameters:

β = Diag
{
~β
}

αY
aj = βjα

X
aj −

1

J

∑
k

βkα
X
ak

The second term on the right hand, included to satisfy the
sum-zero constrains without impose restrictions to the βj ,
make the predictions of this model not a line anymore.

e) GSPREE JxJ model: β = {βjk}, G = {gjk} = BβB

αY
aj =

∑
k

gjkα
X
ak
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Some examples

Data from 2001 and 2011 Population Census in England for the
Hackney Borough. Ethnicity.
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Some examples

Data from 2001 and 2011 Population Census in England for the
Hackney Borough. Ethnicity.

●● ●●

SPREE GSPREE J model JxJ model

−
0.

10
−

0.
05

0.
00

0.
05

White

P
re

di
ct

io
n 

er
ro

r 
(P

ro
po

rt
io

n)

●

SPREE GSPREE J model JxJ model

−
0.

01
5

−
0.

00
5

0.
00

5

Mixed

P
re

di
ct

io
n 

er
ro

r 
(P

ro
po

rt
io

n)

● ●

SPREE GSPREE J model JxJ model

−
0.

06
−

0.
02

0.
02

Asian

P
re

di
ct

io
n 

er
ro

r 
(P

ro
po

rt
io

n)

●●
●

●●
● ●

●

●

●

SPREE GSPREE J model JxJ model

−
0.

04
0.

00
0.

04
0.

08

Black

P
re

di
ct

io
n 

er
ro

r 
(P

ro
po

rt
io

n)

SPREE GSPREE J model JxJ model

−
0.

02
0.

00
0.

02
0.

04

Other

P
re

di
ct

io
n 

er
ro

r 
(P

ro
po

rt
io

n)

15 / 22



Future work

Extending the general model to include random effects
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In summary...

• Having an auxiliary composition (register/census data), an
estimated (updated) composition and the current margins, we
extend the GSPREE model from one to a maximum of J × J
parameters.

• According to our preliminary exercises, the new models show
less bias than SPREE and GSPREE models (fixed effects
approach).

• We are still working on the extension to include cell-specific
random effects. As expected, for a big sample size the
estimative obtained using a mixed model gets closer to the
direct estimate, however, as it is borrowing strength from the
auxiliary composition, it would be more stable.

• MSE estimation is still need to be addressed.
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Model using a Mapping matrix
Motivation

Denote by P = {Pij} the gross flow from the composition X to Y,
i.e., assume that for each area:

θYa1

...

θYaJ

 =


P11 . . . P1J

...
. . .

...

PJ1 . . . PJJ



θXa1

...

θXaJ


The column sum of P is 1.

What is the effect of the mapping matrix P in the log-linear
representation of Y ?

θY
a = PθX

a
?→ log θY

a ≈ M log θX
a
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Model using a Mapping matrix

Using a First Order Taylor approximation over

ln
(
θYaj

)
= ln

(∑
l

θXalPjl

)

as function of ln
(
θXaj

)
, around the distribution of X at an

aggregate level, denoted by θ̃X , we obtain

ln θYaj − ln θ̃Yj ≈
∑
l

(
qjl − τj θ̃Xl

) [
ln θXal − ln θ̃Xl

]

where θ̃Y = P θ̃X , qjl =
Pjl θ̃

X
l

θ̃Yj
is the reverse flow and τj =

Pjrj

θ̃Yj
for

Pjrj one cell specifically chosen for the j category.
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Model using a Mapping matrix

Applying the link function

µaj = log θaj −
1

J

∑
l

log θaj = αj + αaj

we can obtain the relationship

αY
aj ≈

∑
l

(qjl − q̄.l)α
X
al −

∑
l

(τj − τ̄) θ̃Xl α
X
al .

According to our empirical studies, the leading term in the
approximation is the term associated with the reverse flow. In this
sense, a model involving also auxiliary information on the reverse
flow at an aggregate level could be of interest.
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Thanks!
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