Explicit estimators in unbalanced mixed linear models with applications to SAE

Dietrich von Rosen ${ }^{12}$, Tatjana von Rosen ${ }^{3}$,

${ }^{1}$ Department of Energy and Technology, Swedish University of Agricultural Sciences
${ }^{2}$ Mathematical Statistics, Linköping University, Sweden
${ }^{3}$ Department of Statistics, Stockholm University, Sweden

Outline

- Two-way model with unequal number of observations
- Test of variance components
- Mixed linear model with two variance components
- Estimation of fixed effects

Area/Time model

	Time		
Area	1	2	3
1	5	6	5
2	4	2	7
3	7	5	3

$$
\begin{aligned}
y_{i j k}=\mu+\alpha_{i}+\beta_{j}+\gamma_{i j}+\epsilon_{i j k}, & i=1,2, \ldots, r \\
& j=1,2, \ldots, s \\
& k=1,2, \ldots, n_{i j}
\end{aligned}
$$

Two-way model with unequal number of observations

$$
\begin{array}{cl}
y_{i j k}^{s}=\mu_{i j k}+\epsilon_{i j k}^{s}, & i=1,2, \ldots, r \\
\epsilon_{i j k}^{s} \sim N\left(0, \sigma_{s}^{2}\right) & j=1,2, \ldots, s \\
& k=1,2, \ldots, n_{i j} \\
\mu_{i j k}=\theta_{i j k}+u_{i j k}, & i=1,2, \ldots, r \\
u_{i j k} \sim N\left(0, \sigma_{u}^{2}\right) & j=1,2, \ldots, s \\
& k=1,2, \ldots, n_{i j} \\
\theta_{i j k}=\mu+\alpha_{i}+\beta_{j}+\gamma_{i j}+\left(x_{i j k}-\bar{x}_{i j \bullet}\right) \delta_{i j}
\end{array}
$$

Two-way model with unequal number of observations

$$
\theta_{i j k}=\mu+\alpha_{i}+\beta_{j}+\gamma_{i j}+\left(x_{i j k}-\bar{x}_{i j \bullet}\right) \delta_{i j}
$$

Area effects are fixed:

$$
\mu, \quad \alpha_{i}, \quad\left(x_{i j k}-\bar{x}_{i j \bullet}\right) \delta_{i j}
$$

Time effects are random:

$$
\boldsymbol{\beta}=\left(\beta_{j}\right) \sim N_{s}\left(\mathbf{0}, \sigma_{\beta}^{2} \boldsymbol{I}_{s}\right), \quad \gamma=\left(\gamma_{i j}\right) \sim N_{r s}\left(\mathbf{0}, \sigma_{\gamma}^{2} \boldsymbol{I}_{r s}\right)
$$

Two-way model with unequal number of observations

$$
\left.\begin{array}{cl}
y_{i j k}=\mu+\alpha_{i}+\beta_{j}+\gamma_{i j}+\left(x_{i j k}-\bar{x}_{i j \bullet}\right) \delta_{i j}+\epsilon_{i j k}, & i=1,2, \ldots, r \\
\epsilon_{i j k}=u_{i j k}+\epsilon_{i j k}^{s} & j=1,2, \ldots, s \\
k=1,2, \ldots, n_{i j}
\end{array}\right] \begin{aligned}
& \boldsymbol{\beta}=\left(\beta_{j}\right) \sim N_{s}\left(\mathbf{0}, \sigma_{\beta}^{2} \boldsymbol{I}_{s}\right) \\
& \gamma=\left(\gamma_{i j}\right) \sim N_{s}\left(\mathbf{0}, \sigma_{\gamma}^{2} \boldsymbol{I}_{r s}\right) \\
& \boldsymbol{\epsilon}=\left(\epsilon_{i j k}\right) \sim N_{N}\left(\mathbf{0}, \sigma^{2} \boldsymbol{I}_{N}\right), \quad N=\sum_{i j} n_{i j}
\end{aligned}
$$

Two-way model with unequal number of observations

Define \boldsymbol{H} as an averaging operator on $\boldsymbol{y}=\left(y_{i j k}\right)$ and put

$$
\boldsymbol{z}=\left(\bar{y}_{i j \bullet}\right)=\boldsymbol{H}^{\prime} \boldsymbol{y}, \quad \boldsymbol{z}: r s \times 1
$$

There exists a generator of $\mathcal{C}(\boldsymbol{H})^{\perp}$, say \boldsymbol{H}^{0}. Let $\boldsymbol{R}_{x}=\left(x_{i j k}-\bar{x}_{i j \boldsymbol{\bullet}}\right)$ and $\boldsymbol{\delta}=\left(\delta_{i j}\right)$. Then,

$$
\boldsymbol{H}^{o^{\prime}} \boldsymbol{y} \sim N_{N-r s}\left(\boldsymbol{H}^{o^{\prime}} \boldsymbol{R}_{x} \boldsymbol{\delta}, \sigma^{2} \boldsymbol{H}^{o^{\prime}} \boldsymbol{H}^{o}\right) \quad \perp \boldsymbol{z}=\boldsymbol{H}^{\prime} \boldsymbol{y} .
$$

Moreover,

$$
\begin{aligned}
\boldsymbol{z}= & \mu \mathbf{1}_{s} \otimes \mathbf{1}_{r}+\left(\boldsymbol{I}_{r} \otimes \mathbf{1}_{s}\right) \boldsymbol{\alpha}+\left(\mathbf{1}_{r} \otimes \boldsymbol{I}_{s}\right) \boldsymbol{\beta}+\left(\boldsymbol{I}_{r} \otimes \boldsymbol{I}_{s}\right) \boldsymbol{\gamma}+\overline{\boldsymbol{\epsilon}} \\
= & \mu \mathbf{1}_{r s}+\left(\boldsymbol{I}_{r} \otimes \mathbf{1}_{s}\right) \boldsymbol{\alpha}+\left(\mathbf{1}_{r} \otimes \boldsymbol{I}_{s}\right) \boldsymbol{\beta}+\gamma+\overline{\boldsymbol{\epsilon}} \\
& \overline{\boldsymbol{\epsilon}}=\boldsymbol{H}^{\prime} \boldsymbol{\epsilon} \sim N_{r s}\left(\mathbf{0}, \sigma^{2} \boldsymbol{H}^{\prime} \boldsymbol{H}\right) .
\end{aligned}
$$

Decomposition of linear spaces

$$
\boldsymbol{z}=\mu \mathbf{1}_{r s}+\left(\boldsymbol{I}_{r} \otimes \mathbf{1}_{s}\right) \boldsymbol{\alpha}+\left(\mathbf{1}_{r} \otimes \boldsymbol{I}_{s}\right) \boldsymbol{\beta}+\boldsymbol{\gamma}+\overline{\boldsymbol{\epsilon}}
$$

First step: $\mathcal{C}(\boldsymbol{H}) \boxplus \mathcal{C}(\boldsymbol{H})^{\perp}$.
Moreover,

$$
\mathcal{C}(\boldsymbol{H})=\mathcal{C}\left(\boldsymbol{H} \boldsymbol{B}_{1}\right) \oplus \mathcal{C}\left(\boldsymbol{H} \boldsymbol{B}_{2}\right) \oplus \mathcal{C}\left(\boldsymbol{H} \boldsymbol{B}_{3}\right),
$$

where

$$
\begin{aligned}
& \boldsymbol{B}_{1}=\left(\boldsymbol{I}_{r} \otimes \mathbf{1}_{s}\right) s^{-1 / 2} \\
& \boldsymbol{B}_{2}=\left(\mathbf{1}_{r} \otimes \mathbf{1}_{s}^{o}\right)\left(\mathbf{1}_{s}^{o^{\prime}} \mathbf{1}_{s}^{o}\right)^{-1 / 2} r^{-1 / 2} \\
& \boldsymbol{B}_{3}=\left(\mathbf{1}_{r}^{o} \otimes \mathbf{1}_{s}^{o}\right)\left(\left(\mathbf{1}_{r}^{o^{\prime}} \mathbf{1}_{r}^{o}\right)^{-1 / 2} \otimes\left(\mathbf{1}_{s}^{o^{\prime}} \mathbf{1}_{s}^{o}\right)^{-1 / 2}\right)
\end{aligned}
$$

and $\boldsymbol{B}_{1}^{\prime} \boldsymbol{B}_{1}=\boldsymbol{I}_{r}, \boldsymbol{B}_{2}^{\prime} \boldsymbol{B}_{2}=\boldsymbol{I}_{s-1}, \boldsymbol{B}_{3}^{\prime} \boldsymbol{B}_{3}=\boldsymbol{I}_{(r-1)(s-1)}$.

Manipulations

It follows that

$$
D\left[\binom{\boldsymbol{B}_{2}^{\prime} \boldsymbol{z}}{\boldsymbol{B}_{3}^{\prime} \boldsymbol{z}}\right]=\operatorname{diag}\left(r \sigma_{\beta}^{2} \boldsymbol{I}_{s-1}+\sigma_{\gamma}^{2} \boldsymbol{I}_{s-1}, \sigma_{\gamma}^{2} \boldsymbol{I}_{(r-1)(s-1)}\right)+\sigma^{2} \boldsymbol{L},
$$

where

$$
L=\binom{\boldsymbol{B}_{2}^{\prime}}{\boldsymbol{B}_{3}^{\prime}} \boldsymbol{H} \boldsymbol{H}^{\prime}\left(\begin{array}{ll}
\boldsymbol{B}_{2} & \boldsymbol{B}_{3}
\end{array}\right)
$$

Manipulations

Main idea

Solve the following equation in $\boldsymbol{u}=\left(\boldsymbol{u}_{1}^{\prime}, \boldsymbol{u}_{2}^{\prime}\right)^{\prime}$

$$
D\left[\binom{\boldsymbol{B}_{2}^{\prime} \boldsymbol{z}}{\boldsymbol{B}_{3}^{\prime} \boldsymbol{z}}+\boldsymbol{u}\right]=\operatorname{diag}\left(r \sigma_{\beta}^{2} \boldsymbol{I}_{s-1}+\sigma_{\gamma}^{2} \boldsymbol{I}_{s-1}, \sigma_{\gamma}^{2} \boldsymbol{I}_{(r-1)(s-1)}\right)+c \sigma^{2} \boldsymbol{I}_{r(s-1)},
$$

where c is a constant and u is independent of z and normally distributed.

Why is this important?

Manipulations

Solution

Since
$\left(\boldsymbol{H}^{o^{\prime}} \boldsymbol{H}^{o}\right)^{-1 / 2} \boldsymbol{H}^{o^{\prime}} \boldsymbol{y} \sim N_{N-r s}\left(\left(\boldsymbol{H}^{o^{\prime}} \boldsymbol{H}^{o}\right)^{-1 / 2} \boldsymbol{H}^{o^{\prime}} \boldsymbol{R}_{x} \boldsymbol{\delta}, \sigma^{2} \boldsymbol{I}_{N-r s}\right)$ we may regress and define the residual \boldsymbol{R} so that

$$
\boldsymbol{R} \sim N_{N-r s-t}\left(\mathbf{0}, \sigma^{2} \boldsymbol{I}_{N-r s-t}\right), \quad t=r\left(\boldsymbol{H}^{o^{\prime}} \boldsymbol{R}_{x}\right) .
$$

Let v be $r(s-1)$ variables drawn from \boldsymbol{R} and let $\lambda_{\text {max }}$ be the largest eigenvalue of L. Then,

$$
\boldsymbol{u}=\left(\lambda_{\max } \boldsymbol{I}-\boldsymbol{L}\right)^{1 / 2} \boldsymbol{v}
$$

solves

$$
D\left[\binom{\boldsymbol{B}_{2}^{\prime} \boldsymbol{z}}{\boldsymbol{B}_{3}^{\prime} \boldsymbol{z}}+\boldsymbol{u}\right]=\operatorname{diag}\left(r \sigma_{\beta}^{2} \boldsymbol{I}_{s-1}+\sigma_{\gamma}^{2} \boldsymbol{I}_{s-1}, \sigma_{\gamma}^{2} \boldsymbol{I}_{(r-1)(s-1)}\right)+c \sigma^{2} \boldsymbol{I}_{r(s-1)}
$$

Exact tests

Let

$$
\begin{aligned}
& \boldsymbol{w}_{1}=\boldsymbol{B}_{2}^{\prime} \boldsymbol{z}+\boldsymbol{u}_{1} \sim N_{s-1}\left(\mathbf{0}, r \sigma_{\beta}^{2} \boldsymbol{I}_{s-1}+\sigma_{\gamma}^{2} \boldsymbol{I}_{s-1}+\lambda_{\max } \sigma^{2} \boldsymbol{I}_{s-1}\right) \\
& \boldsymbol{w}_{2}=\boldsymbol{B}_{3}^{\prime} \boldsymbol{z}+\boldsymbol{u}_{2} \sim N_{(r-1)(s-1)}\left(\mathbf{0}, \sigma_{\gamma}^{2} \boldsymbol{I}_{(r-1)(s-1)}+\lambda_{\max } \sigma^{2} \boldsymbol{I}_{(r-1)(s-1)}\right)
\end{aligned}
$$

Exact tests

Then,

$$
\begin{gathered}
\frac{\boldsymbol{w}_{1}^{\prime} \boldsymbol{w}_{1}}{r \sigma_{\beta}^{2}+\sigma_{\gamma}^{2}+\lambda_{\max } \sigma^{2}} \sim \chi^{2}(s-1) \\
\frac{\boldsymbol{w}_{2}^{\prime} \boldsymbol{w}_{2}}{\sigma_{\gamma}^{2}+\lambda_{\max } \sigma^{2}} \sim \chi^{2}((r-1)(s-1))
\end{gathered}
$$

and to test $H_{0}: \sigma_{\beta}^{2}=0$ one can use

$$
\frac{\boldsymbol{w}_{1}^{\prime} \boldsymbol{w}_{1} /(s-1)}{\boldsymbol{w}_{2}^{\prime} \boldsymbol{w}_{2} /(r-1)(s-1)} \sim F(s-1,(r-1)(s-1))
$$

Exact tests

To test $H_{0}: \sigma_{\gamma}^{2}=0$ one can use

$$
\frac{\boldsymbol{w}_{2}^{\prime} \boldsymbol{w}_{2} /(r-1)(s-1)}{\lambda_{\max } \boldsymbol{v}_{2}^{\prime} \boldsymbol{v}_{2} /(N-2 r s+r)} \sim F((r-1)(s-1), N-2 r s+r),
$$

where \boldsymbol{v}_{2} are $N-2 r s+r$ variables from \boldsymbol{R}.

Some references

- Wald (1941), Spjøtvoll (1968), Thomsen (1975) presented exact tests for ratios of VC in one-way and two-way cross-classification models without interactions.
- Khuri (1986, 1987, 1990), Khuri \& Little (1987), Gallo \& Khuri (1990) constructed exact tests concerning the VC of the random effects and estimable linear functions of the fixed effects in an unbalanced mixed two-way cross-classification with interaction model.
- Öfversten $(1993,1995)$ presented methods for obtaining exact F-tests of VC for models with one random factor, models with nested classifications, and models with interaction between two random factors.
- Christensen (1996) commented on Öfversten's results and focused on linear spaces.
- Others: Seifert (1992), Mathew \& Sinha (1992).

Estimation of fixed effects

Assume the model:

$$
\boldsymbol{y}=\boldsymbol{X} \boldsymbol{\beta}+\boldsymbol{Z} \gamma+\epsilon,
$$

where $\boldsymbol{\beta}$ is to be estimated and y : $n \times 1$, the random vector, \boldsymbol{X} : $n \times k, Z: n \times l$ are known matrices both supposed to be of full column rank, $\mathcal{C}(\boldsymbol{X}) \subseteq \mathcal{C}(\boldsymbol{Z}), \gamma \sim N_{l}\left(\mathbf{0}, \sigma_{\gamma}^{2} \boldsymbol{I}_{l}\right)$, and $\epsilon \sim N_{n}\left(\mathbf{0}, \sigma^{2} \boldsymbol{I}_{n}\right)$, where the variances are unknown.

Let \boldsymbol{C} : $n \times t$ be of full rank such that $\mathcal{C}(\boldsymbol{C})=\mathcal{C}(\boldsymbol{X})^{\perp} \cap \mathcal{C}(\boldsymbol{Z})$.
We have $\mathcal{C}(\boldsymbol{Z})=\mathcal{C}(\boldsymbol{X}) \boxplus \mathcal{C}(\boldsymbol{C})$, and

$$
Z=(X: C) Q=X Q_{1}+C Q_{2},
$$

for some $\boldsymbol{Q}^{\prime}=\left(\boldsymbol{Q}_{1}^{\prime}: \boldsymbol{Q}_{2}^{\prime}\right): l \times k: l \times t$.

Estimation

A canonical form of the model can be obtained as follows: Let

$$
\begin{aligned}
& \boldsymbol{B}_{1}=\boldsymbol{X}\left(\boldsymbol{X}^{\prime} \boldsymbol{X}\right)^{-1}, \\
& \boldsymbol{B}_{2}=\boldsymbol{C}\left(\boldsymbol{C}^{\prime} \boldsymbol{C}\right)^{-1},
\end{aligned}
$$

\boldsymbol{B}_{3} be any matrix such that $\mathcal{C}\left(\boldsymbol{B}_{3}\right)=\mathcal{C}(\boldsymbol{Z})^{\perp}$.
Observe

$$
R^{n}=\mathcal{C}\left(\boldsymbol{B}_{1}\right) \boxplus \mathcal{C}\left(\boldsymbol{B}_{2}\right) \boxplus \mathcal{C}\left(\boldsymbol{B}_{3}\right) .
$$

Then,

$$
\boldsymbol{y}=\boldsymbol{X} \boldsymbol{\beta}+\boldsymbol{Z} \gamma+\epsilon
$$

is equivalent to

Estimation: $\boldsymbol{y}=\boldsymbol{X} \boldsymbol{\beta}+\boldsymbol{Z} \boldsymbol{\gamma}+\epsilon$

$$
\boldsymbol{y}=\boldsymbol{X} \boldsymbol{\beta}+\boldsymbol{X} \boldsymbol{Q}_{1} \gamma+\boldsymbol{C} \boldsymbol{Q}_{2} \gamma+\epsilon
$$

and we get that a 1-1 transformation of the model equals

$$
\begin{align*}
& \left(\boldsymbol{B}_{1}=\boldsymbol{X}\left(\boldsymbol{X}^{\prime} \boldsymbol{X}\right)^{-1}, \boldsymbol{B}_{2}=\boldsymbol{C}\left(\boldsymbol{C}^{\prime} \boldsymbol{C}\right)^{-1}, \mathcal{C}\left(\boldsymbol{B}_{3}\right)=\mathcal{C}(\boldsymbol{Z})^{\perp}\right) \\
& u_{1}:=\boldsymbol{B}_{1}^{\prime} \boldsymbol{y}=\boldsymbol{\beta}+\boldsymbol{Q}_{1} \gamma+\boldsymbol{B}_{1}^{\prime} \epsilon, \tag{1}\\
& \boldsymbol{B}_{2}^{\prime} \boldsymbol{y}=\boldsymbol{Q}_{2} \gamma+\boldsymbol{B}_{2}^{\prime} \epsilon, \tag{2}\\
& \boldsymbol{B}_{3}^{\prime} \boldsymbol{y}=\boldsymbol{B}_{3}^{\prime} \epsilon . \tag{3}
\end{align*}
$$

(2) is equivalent to

$$
\boldsymbol{v}_{2}:=\left(\boldsymbol{Q}_{2} \boldsymbol{Q}_{2}^{\prime}\right)^{-1 / 2} \boldsymbol{B}_{2}^{\prime} \boldsymbol{y}=\left(\boldsymbol{Q}_{2} \boldsymbol{Q}_{2}^{\prime}\right)^{-1 / 2} \boldsymbol{Q}_{2} \gamma+\left(\boldsymbol{Q}_{2} \boldsymbol{Q}_{2}^{\prime}\right)^{-1 / 2} \boldsymbol{B}_{2}^{\prime} \epsilon
$$

Estimation

Observe that

$$
D\left[\boldsymbol{v}_{2}\right]=\sigma_{\gamma}^{2} \boldsymbol{I}_{t}+\left(\boldsymbol{Q}_{2} \boldsymbol{Q}_{2}^{\prime}\right)^{-1 / 2} \boldsymbol{B}_{2}^{\prime} \boldsymbol{B}_{2}\left(\boldsymbol{Q}_{2} \boldsymbol{Q}_{2}^{\prime}\right)^{-1 / 2}
$$

In the next we perform the important step to add observations from (3) to (4) so that a diagonal dispersion is obtained, i.e.

$$
\begin{aligned}
\boldsymbol{u}_{2} & :=\left(\boldsymbol{Q}_{2} \boldsymbol{Q}_{2}^{\prime}\right)^{-1 / 2} \boldsymbol{B}_{2}^{\prime} \boldsymbol{y} \\
& +\left(\lambda \boldsymbol{I}_{t}-\left(\boldsymbol{Q}_{2} \boldsymbol{Q}_{2}^{\prime}\right)^{-1 / 2} \boldsymbol{B}_{2}^{\prime} \boldsymbol{B}_{2}\left(\boldsymbol{Q}_{2} \boldsymbol{Q}_{2}^{\prime}\right)^{-1 / 2}\right)^{1 / 2} \operatorname{sel}\left(\boldsymbol{B}_{3}^{\prime} \boldsymbol{y}, t\right),
\end{aligned}
$$

where the selection operator $\operatorname{sel}\left(\boldsymbol{B}_{3}^{\prime} \boldsymbol{y}, t\right)$ selects t observations from $\boldsymbol{B}_{3}^{\prime} \boldsymbol{y} \sim N_{n-l}\left(\mathbf{0}, \sigma^{2} \boldsymbol{I}_{n-l}\right)$ and λ is so large that the square root exists.

Estimation

Now,

$$
\begin{aligned}
E\left[\boldsymbol{u}_{2}\right] & =\mathbf{0}, \\
D\left[\boldsymbol{u}_{2}\right] & =\sigma_{\gamma}^{2} \boldsymbol{I}_{t}+\lambda \sigma^{2} \boldsymbol{I}_{t}
\end{aligned}
$$

and u_{2} is normally distributed.
It is clear that if we would like to utilize u_{2} the parameter λ should be chosen as small as possible because the dispersion of u_{2} is proportional to λ.
Moreover, for $\boldsymbol{u}_{1}=\boldsymbol{B}_{1}^{\prime} \boldsymbol{y}=\boldsymbol{\beta}+\boldsymbol{Q}_{1} \boldsymbol{\gamma}+\boldsymbol{B}_{1}^{\prime} \epsilon$,
$C\left[\boldsymbol{u}_{1}, \boldsymbol{u}_{2}\right]=C\left[\boldsymbol{Q}_{1} \boldsymbol{\gamma},\left(\boldsymbol{Q}_{2} \boldsymbol{Q}_{2}^{\prime}\right)^{-1 / 2} \boldsymbol{Q}_{2} \boldsymbol{\gamma}\right]=\sigma_{\gamma}^{2} \boldsymbol{Q}_{1} \boldsymbol{Q}_{2}^{\prime}\left(\boldsymbol{Q}_{2} \boldsymbol{Q}_{2}^{\prime}\right)^{-1 / 2}$.

Estimation

Below the main action takes place, namely condition u_{1} with u_{2} and we obtain

$$
\begin{aligned}
& E\left[\boldsymbol{u}_{1} \mid \boldsymbol{u}_{2}\right]=E\left[\boldsymbol{u}_{1}\right]+C\left[\boldsymbol{u}_{1}, \boldsymbol{u}_{2}\right] D\left[\boldsymbol{u}_{2}\right]^{-1} \boldsymbol{u}_{2} \\
& =\boldsymbol{\beta}+\frac{\sigma_{\gamma}^{2}}{\sigma_{\gamma}^{2}+\lambda \sigma^{2}} \boldsymbol{Q}_{1} \boldsymbol{Q}_{2}^{\prime}\left(\boldsymbol{Q}_{2} \boldsymbol{Q}_{2}^{\prime}\right)^{-1 / 2} \boldsymbol{u}_{2} .
\end{aligned}
$$

Thus, with known variances

$$
\begin{aligned}
& \widehat{\boldsymbol{\beta}}=\boldsymbol{u}_{1}-\frac{\sigma_{\gamma}^{2}}{\sigma_{\gamma}^{2}+\lambda \sigma^{2}} \boldsymbol{Q}_{1} \boldsymbol{Q}_{2}^{\prime}\left(\boldsymbol{Q}_{2} \boldsymbol{Q}_{2}^{\prime}\right)^{-1 / 2} \boldsymbol{u}_{2} \\
& =\left(\boldsymbol{X}^{\prime} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\prime} \boldsymbol{y}-\frac{\sigma_{\gamma}^{2}}{\sigma_{\gamma}^{2}+\lambda \sigma^{2}} \boldsymbol{Q}_{1} \boldsymbol{Q}_{2}^{\prime}\left(\boldsymbol{Q}_{2} \boldsymbol{Q}_{2}^{\prime}\right)^{-1 / 2} \boldsymbol{u}_{2}
\end{aligned}
$$

Estimation

Finally we estimate the ratio of the variances. Note that

$$
\frac{\sigma_{\gamma}^{2}}{\sigma_{\gamma}^{2}+\lambda \sigma^{2}}=1-\frac{\lambda \sigma^{2}}{\sigma_{\gamma}^{2}+\lambda \sigma^{2}}
$$

and $\left(\boldsymbol{u}_{2} \sim N_{t}\left(\mathbf{0},\left(\sigma_{\gamma}^{2}+\lambda \sigma^{2}\right) \boldsymbol{I}_{t}\right), \boldsymbol{u}_{3} \sim N_{n-t-l}\left(\mathbf{0}, \sigma^{2} \boldsymbol{I}_{n-t-l}\right)\right)$

$$
\begin{aligned}
& E\left[\left(\boldsymbol{u}_{2}^{\prime} \boldsymbol{u}_{2}\right)^{-1}\right]=\frac{1}{t-2}\left(\sigma_{\gamma}^{2}+\lambda \sigma^{2}\right)^{-1}, \quad t>2 \\
& E\left[\boldsymbol{u}_{3}^{\prime} \boldsymbol{u}_{3}\right]=(n-t-l) \sigma^{2} .
\end{aligned}
$$

Because u_{2} and u_{3} are independent we immediately find an estimator of $\frac{\sigma^{2}}{\sigma_{\gamma}^{2}+\lambda \sigma^{2}}$, and thus β has been estimated.

Estimation

The expression equals

$$
\widehat{\boldsymbol{\beta}}=\boldsymbol{u}_{1}-\boldsymbol{f}=\left(\boldsymbol{X}^{\prime} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\prime} \boldsymbol{y}-\boldsymbol{f}
$$

where

$$
\boldsymbol{f}=\left(1-c \boldsymbol{u}_{3}^{\prime} \boldsymbol{u}_{3}\left(\boldsymbol{u}_{2}^{\prime} \boldsymbol{u}_{2}\right)^{-1}\right) \boldsymbol{Q}_{1} \boldsymbol{Q}_{2}^{\prime}\left(\boldsymbol{Q}_{2} \boldsymbol{Q}_{2}^{\prime}\right)^{-1 / 2} \boldsymbol{u}_{2}
$$

and

$$
c=\lambda \frac{t-2}{n-t-l}
$$

Properties

Before going to calculate the mean and dispersion of the estimator we need to know

$$
\begin{aligned}
& E\left[\boldsymbol{u}_{2}\left(\boldsymbol{u}_{2}^{\prime} \boldsymbol{u}_{2}\right)^{-1} \boldsymbol{u}_{2}^{\prime}\right] \\
& E\left[\boldsymbol{u}_{2}\left(\boldsymbol{u}_{2}^{\prime} \boldsymbol{u}_{2}\right)^{-1}\left(\boldsymbol{u}_{2}^{\prime} \boldsymbol{u}_{2}\right)^{-1} \boldsymbol{u}_{2}^{\prime}\right]
\end{aligned}
$$

Since Γu_{2} has the same distribution as u_{2} for any orthogonal matrix $\boldsymbol{\Gamma}$ we have that $\boldsymbol{\Gamma} E\left[\boldsymbol{u}_{2}\left(\boldsymbol{u}_{2}^{\prime} \boldsymbol{u}_{2}\right)^{-1} \boldsymbol{u}_{2}^{\prime}\right] \boldsymbol{\Gamma}^{\prime}$ equals $E\left[\boldsymbol{u}_{2}\left(\boldsymbol{u}_{2}^{\prime} \boldsymbol{u}_{2}\right)^{-1} \boldsymbol{u}_{2}^{\prime}\right]$. Thus

$$
E\left[\boldsymbol{u}_{2}\left(\boldsymbol{u}_{2}^{\prime} \boldsymbol{u}_{2}\right)^{-1} \boldsymbol{u}_{2}^{\prime}\right]=c_{0} \boldsymbol{I}_{t}
$$

and taking the trace on both sides implies that $c_{0}=1 / t$.

Properties

Hence,

$$
E\left[\boldsymbol{u}_{2}\left(\boldsymbol{u}_{2}^{\prime} \boldsymbol{u}_{2}\right)^{-1} \boldsymbol{u}_{2}^{\prime}\right]=\boldsymbol{I}_{t} / t .
$$

Similarly

$$
\begin{aligned}
& E\left[\boldsymbol{u}_{2}\left(\boldsymbol{u}_{2}^{\prime} \boldsymbol{u}_{2}\right)^{-1}\left(\boldsymbol{u}_{2}^{\prime} \boldsymbol{u}_{2}\right)^{-1} \boldsymbol{u}_{2}^{\prime}\right]=c_{0} \boldsymbol{I}, \\
& c_{o}=E\left[\left(\boldsymbol{u}_{2}^{\prime} \boldsymbol{u}_{2}\right)^{-1}\right] / t=\frac{1}{t(t-2)}\left(\sigma_{\gamma}^{2}+\lambda \sigma^{2}\right)^{-1} .
\end{aligned}
$$

Properties $\boldsymbol{\beta}=\boldsymbol{u}_{1}-\boldsymbol{f}=\left(\boldsymbol{X}^{\prime} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\prime} \boldsymbol{y}-\boldsymbol{f}$

Now the mean and dispersion for $\widehat{\boldsymbol{\beta}}$ is derived. Since $E\left[\boldsymbol{u}_{2}\right]=0$ and $E\left[\boldsymbol{u}_{2}\left(\boldsymbol{u}_{2}^{\prime} \boldsymbol{u}_{2}\right)^{-1}\right]=\mathbf{0}$ it follows that $\widehat{\boldsymbol{\beta}}$ is unbiased, i.e.

$$
E[\widehat{\boldsymbol{\beta}}]=\boldsymbol{\beta}
$$

Moreover, we have

$$
D[\widehat{\boldsymbol{\beta}}]=D\left[\boldsymbol{u}_{1}\right]+D[\boldsymbol{f}]-C\left[\boldsymbol{u}_{1}, \boldsymbol{f}\right]-C\left[\boldsymbol{f}, \boldsymbol{u}_{1}\right]
$$

and the terms in the right hand side will be considered separately.

Properties

$$
\begin{aligned}
& D[\boldsymbol{f}] \\
& =E\left[\left(1-c \boldsymbol{u}_{3}^{\prime} \boldsymbol{u}_{3}\left(\boldsymbol{u}_{2}^{\prime} \boldsymbol{u}_{2}\right)^{-1}\right)^{2} \boldsymbol{Q}_{1} \boldsymbol{Q}_{2}^{\prime}\left(\boldsymbol{Q}_{2} \boldsymbol{Q}_{2}^{\prime}\right)^{-1 / 2} \boldsymbol{u}_{2} \boldsymbol{u}_{2}^{\prime}\left(\boldsymbol{Q}_{2} \boldsymbol{Q}_{2}^{\prime}\right)^{-1 / 2} \boldsymbol{Q}_{2} \boldsymbol{Q}_{1}^{\prime}\right]
\end{aligned}
$$

Hence we have to perform the following calculation:

$$
\begin{aligned}
& E\left[\boldsymbol{Q}_{1} \boldsymbol{Q}_{2}^{\prime}\left(\boldsymbol{Q}_{2} \boldsymbol{Q}_{2}^{\prime}\right)^{-1 / 2} \boldsymbol{u}_{2} \boldsymbol{u}_{2}^{\prime}\left(\boldsymbol{Q}_{2} \boldsymbol{Q}_{2}^{\prime}\right)^{-1 / 2} \boldsymbol{Q}_{2} \boldsymbol{Q}_{1}^{\prime}\right] \\
& =\left(\sigma_{\gamma}^{2}+\lambda \sigma^{2}\right) \boldsymbol{Q}_{1} \boldsymbol{Q}_{2}^{\prime}\left(\boldsymbol{Q}_{2} \boldsymbol{Q}_{2}^{\prime}\right)^{-1} \boldsymbol{Q}_{2} \boldsymbol{Q}_{1}^{\prime},
\end{aligned}
$$

$$
\begin{aligned}
& E\left[c \boldsymbol{u}_{3}^{\prime} \boldsymbol{u}_{3}\left(\boldsymbol{u}_{2}^{\prime} \boldsymbol{u}_{2}\right)^{-1} \boldsymbol{Q}_{1} \boldsymbol{Q}_{2}^{\prime}\left(\boldsymbol{Q}_{2} \boldsymbol{Q}_{2}^{\prime}\right)^{-1 / 2} \boldsymbol{u}_{2} \boldsymbol{u}_{2}^{\prime}\left(\boldsymbol{Q}_{2} \boldsymbol{Q}_{2}^{\prime}\right)^{-1 / 2} \boldsymbol{Q}_{2} \boldsymbol{Q}_{1}^{\prime}\right] \\
& =c(n-t-l) \sigma^{2} E\left[\boldsymbol{u}_{2}\left(\boldsymbol{u}_{2}^{\prime} \boldsymbol{u}_{2}\right)^{-1} \boldsymbol{u}_{2}^{\prime}\right] \boldsymbol{Q}_{1} \boldsymbol{Q}_{2}^{\prime}\left(\boldsymbol{Q}_{2} \boldsymbol{Q}_{2}^{\prime}\right)^{-1} \boldsymbol{Q}_{2} \boldsymbol{Q}_{1}^{\prime} \\
& =c \frac{(n-t-l) \sigma^{2}}{t} \boldsymbol{Q}_{1} \boldsymbol{Q}_{2}^{\prime}\left(\boldsymbol{Q}_{2} \boldsymbol{Q}_{2}^{\prime}\right)^{-1} \boldsymbol{Q}_{2} \boldsymbol{Q}_{1}^{\prime},
\end{aligned}
$$

Properties

$$
\begin{aligned}
& E\left[c^{2}\left(\boldsymbol{u}_{3}^{\prime} \boldsymbol{u}_{3}\right)^{2}\left(\boldsymbol{u}_{2}^{\prime} \boldsymbol{u}_{2}\right)^{-2} \boldsymbol{Q}_{1} \boldsymbol{Q}_{2}^{\prime}\left(\boldsymbol{Q}_{2} \boldsymbol{Q}_{2}^{\prime}\right)^{-1 / 2} \boldsymbol{u}_{2} \boldsymbol{u}_{2}^{\prime}\left(\boldsymbol{Q}_{2} \boldsymbol{Q}_{2}^{\prime}\right)^{-1 / 2} \boldsymbol{Q}_{2} \boldsymbol{Q}_{1}^{\prime}\right] \\
& =c^{2} 2(n-t-l)\left(\sigma^{2}\right)^{2} E\left[\boldsymbol{u}_{2}\left(\boldsymbol{u}_{2}^{\prime} \boldsymbol{u}_{2}\right)^{-1}\left(\boldsymbol{u}_{2}^{\prime} \boldsymbol{u}_{2}\right)^{-1} \boldsymbol{u}_{2}^{\prime}\right] \boldsymbol{Q}_{1} \boldsymbol{Q}_{2}^{\prime}\left(\boldsymbol{Q}_{2} \boldsymbol{Q}_{2}^{\prime}\right)^{-1} \boldsymbol{Q}_{2} \boldsymbol{Q}_{1}^{\prime} \\
& =c^{2} \frac{2(n-t-l)\left(\sigma^{2}\right)^{2}}{t(t-2)\left(\sigma_{\gamma}^{2}+\lambda \sigma^{2}\right)} \boldsymbol{Q}_{1} \boldsymbol{Q}_{2}^{\prime}\left(\boldsymbol{Q}_{2} \boldsymbol{Q}_{2}^{\prime}\right)^{-1} \boldsymbol{Q}_{2} \boldsymbol{Q}_{1}^{\prime} .
\end{aligned}
$$

$$
D[\widehat{\boldsymbol{\beta}}]=D\left[\boldsymbol{u}_{1}\right]+D[\boldsymbol{f}]-C\left[\boldsymbol{u}_{1}, \boldsymbol{f}\right]-C\left[\boldsymbol{f}, \boldsymbol{u}_{1}\right]
$$

Hence,

$$
\begin{align*}
& D[\boldsymbol{f}] \\
& =\left(\left(\sigma_{\gamma}^{2}+\lambda \sigma^{2}\right)-2 c \frac{(n-t-l) \sigma^{2}}{t}+c^{2} \frac{2(n-t-l)\left(\sigma^{2}\right)^{2}}{t(t-2)\left(\sigma_{\gamma}^{2}+\lambda \sigma^{2}\right)}\right) \\
& \quad \times \boldsymbol{Q}_{1} \boldsymbol{Q}_{2}^{\prime}\left(\boldsymbol{Q}_{2} \boldsymbol{Q}_{2}^{\prime}\right)^{-1} \boldsymbol{Q}_{2} \boldsymbol{Q}_{1}^{\prime} . \tag{5}
\end{align*}
$$

Now $C\left[\boldsymbol{f}, \boldsymbol{u}_{1}\right]$ is calculated via conditioning $\boldsymbol{u}_{1} \mid \boldsymbol{u}_{2}$:

$$
C\left[\boldsymbol{f}, \boldsymbol{u}_{1}\right]=E_{u_{2}} E_{u_{1} \mid u_{2}} E_{u_{3}}\left[\left(1-c \boldsymbol{u}_{3}^{\prime} \boldsymbol{u}_{3}\left(\boldsymbol{u}_{2}^{\prime} \boldsymbol{u}_{2}\right)^{-1}\right) \boldsymbol{Q}_{1} \boldsymbol{Q}_{2}^{\prime}\left(\boldsymbol{Q}_{2} \boldsymbol{Q}_{2}^{\prime}\right)^{-1 / 2} \boldsymbol{u}_{2} \boldsymbol{u}_{1}^{\prime}\right]
$$

Properties

$$
\begin{align*}
& C\left[\boldsymbol{f}, \boldsymbol{u}_{1}\right] \\
& =E_{u_{2}} E_{u_{1} \mid u_{2}} E_{u_{3}}\left[\left(1-c \boldsymbol{u}_{3}^{\prime} \boldsymbol{u}_{3}\left(\boldsymbol{u}_{2}^{\prime} \boldsymbol{u}_{2}\right)^{-1}\right) \boldsymbol{Q}_{1} \boldsymbol{Q}_{2}^{\prime}\left(\boldsymbol{Q}_{2} \boldsymbol{Q}_{2}^{\prime}\right)^{-1 / 2} \boldsymbol{u}_{2} \boldsymbol{u}_{1}^{\prime}\right] \\
& =E_{u_{2}}\left[\left(1-c E\left[\boldsymbol{u}_{3}^{\prime} \boldsymbol{u}_{3}\right]\left(\boldsymbol{u}_{2}^{\prime} \boldsymbol{u}_{2}\right)^{-1}\right) \boldsymbol{Q}_{1} \boldsymbol{Q}_{2}^{\prime}\left(\boldsymbol{Q}_{2} \boldsymbol{Q}_{2}^{\prime}\right)^{-1 / 2} \boldsymbol{u}_{2} \boldsymbol{u}_{2}^{\prime}\right. \\
& \left.\quad \times\left(\boldsymbol{Q}_{2} \boldsymbol{Q}_{2}^{\prime}\right)^{-1 / 2} \boldsymbol{Q}_{2} \boldsymbol{Q}_{1}^{\prime}\right] \sigma_{\gamma}^{2} /\left(\sigma_{\gamma}^{2}+\lambda \sigma^{2}\right)^{-1} \\
& =\left(\sigma_{\gamma}^{2}-c \frac{\sigma_{\gamma}^{2} \sigma^{2}(n-t-l)}{t\left(\sigma_{\gamma}^{2}+\lambda \sigma^{2}\right)}\right) \boldsymbol{Q}_{1} \boldsymbol{Q}_{2}^{\prime}\left(\boldsymbol{Q}_{2} \boldsymbol{Q}_{2}^{\prime}\right)^{-1} \boldsymbol{Q}_{2} \boldsymbol{Q}_{1}^{\prime} \tag{6}
\end{align*}
$$

Thus, from (5), (6) and $D\left[\boldsymbol{u}_{1}\right]=\sigma_{\gamma} \boldsymbol{Q}_{1} \boldsymbol{Q}_{1}^{\prime}+\sigma^{2} \boldsymbol{B}_{1}^{\prime} \boldsymbol{B}_{1}, D[\widehat{\boldsymbol{\beta}}]$ is obtained, i.e.

$$
D[\widehat{\boldsymbol{\beta}}]=D\left[\boldsymbol{u}_{1}\right]+D[\boldsymbol{f}]-2 C\left[\boldsymbol{u}_{1}, \boldsymbol{f}\right]
$$

It remains to express $Q_{1} Q_{1}^{\prime}$ and $Q_{1} Q_{2}^{\prime}\left(\boldsymbol{Q}_{2} \boldsymbol{Q}_{2}^{\prime}\right)^{-1} \boldsymbol{Q}_{2} \boldsymbol{Q}_{1}^{\prime}$.

Properties

It remains to express $Q_{1} Q_{1}^{\prime}$ and $Q_{1} Q_{2}^{\prime}\left(Q_{2} Q_{2}^{\prime}\right)^{-1} Q_{2} Q_{1}^{\prime}$ in the original matrices. The expression follow however immediately from

$$
\left.\left.\begin{array}{l}
\binom{\left(\boldsymbol{X}^{\prime} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\prime}}{\left(\boldsymbol{C}^{\prime} C\right)^{-1} C^{\prime}} Z Z^{\prime}\left(\boldsymbol{X}\left(\boldsymbol{X}^{\prime} \boldsymbol{X}\right)^{-1}\right. \\
C\left(C^{\prime} C\right)^{-1}
\end{array}\right)\right) .\left(\begin{array}{ll}
Q_{1} \boldsymbol{Q}_{1}^{\prime} & \boldsymbol{Q}_{1} \boldsymbol{Q}_{2}^{\prime} \\
\boldsymbol{Q}_{2} \boldsymbol{Q}_{1}^{\prime} & Q_{2} \boldsymbol{Q}_{2}^{\prime}
\end{array}\right) .
$$

$$
\begin{aligned}
& \boldsymbol{Q}_{1} \boldsymbol{Q}_{1}^{\prime}=\left(\boldsymbol{X}^{\prime} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\prime} \boldsymbol{Z} \boldsymbol{Z}^{\prime} \boldsymbol{X}^{\prime}\left(\boldsymbol{X}^{\prime} \boldsymbol{X}\right)^{-1} \\
& \boldsymbol{Q}_{1} \boldsymbol{Q}_{2}^{\prime}\left(\boldsymbol{Q}_{2} \boldsymbol{Q}_{2}^{\prime}\right)^{-1} \boldsymbol{Q}_{2} \boldsymbol{Q}_{1}^{\prime} \\
& \quad=\left(\boldsymbol{X}^{\prime} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\prime} \boldsymbol{Z} \boldsymbol{Z}^{\prime} \boldsymbol{C}\left(\boldsymbol{C}^{\prime} \boldsymbol{Z} \boldsymbol{Z}^{\prime} \boldsymbol{C}\right)^{-1} \boldsymbol{C}^{\prime} \boldsymbol{Z} \boldsymbol{Z}^{\prime} \boldsymbol{X}^{\prime}\left(\boldsymbol{X}^{\prime} \boldsymbol{X}\right)^{-1}
\end{aligned}
$$

