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Introduction

@ The term Growth Curve Modeling has been used in different
contexts to refer to a wide array of statistical models for repeated
measures data.

@ It has long played a significant role in empirical research within the
developmental sciences, particulary in studying between-individual
differences and within-individual patterns of change over time.
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Introduction (cont’d)

@ We propose to apply this model in SAE settings to get a model
which borrows strength across both small areas and over time by
incorporating simultaneously the effects of areas and time
interaction.

@ This model accounts for repeated surveys, group individuals and
random effects variation. The estimation is discussed with a
likelihood based approach and a simulation study is conducted.
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The model formulation (cont’d)

@ We consider repeated measurements on variable of interest y for p
time points, t;, ..., t, from the finite population U of size N
partitioned into m disjoint subpopulations or domains Uy, ..., Uy,
called small areas of sizes N;,i =1,...,m such that > N; = N.

@ We also assume that in every area, there are k different groups of
units of size N, for goup g such that > Zgzl Nig = N.

@ We draw a sample of size n in all small areas such that the sample
. . . . m k
of size n; is observed in area i and > ;"> _; nj; = n and we
suppose that we have auxiliary data x;; of r variables (covariates)
available for each population unit j in all m small areas.
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The model formulation (cont’d)

@ The model at Small Area level is given by
Y,' :AB,'C,‘ + 1’7/X,' + ].U: + E,‘, (1)
u; ~ NN,(O, 0'3'),
Ei ~ Np,N;((); Ugla IN,')7

where A and C; are resectively within-individual and
between-individual design matrices for fixed effects given by

1t - 971 1 10 00 0

1t -t 0 01 10 0
A= . . 7Ci: .

1 t, td ! 0 00 01 1
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The model formulation (cont’d)

@ The corresponding model at population level for all small areas can
be expressed as

Y = A B C +14[,:L:---:1] X + 1 v +_E
~ O~~~ g S~ =~~~
pxN pXq gxmk mkxN pxmr mrxN px1l 1xN pxN
or

Y = ABC + 14'DX + 1u'+E, (2)
forD=[l,:1,:---:1]
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Estimation of model parameters

@ In order to transform (2) to a model which is easier to estimate, we
transform the design matrix A into a new matrix A; with two parts
A; = [1 : H] and the parameter matrix into a new matrix
= = [&; : =] comformably such that

C(A) = C(1) @ C(H) with C(H) = C(1)* NC(A)

@ One way of this transformation is given below

1t - 0! 1 tp—t - t071— a1
-1 = q-1 _ Jq—1
1 tp - t) 1 tp—t - t]  —td
A=1|. . 2 — A = 2
1 t, - it 1 t,—t -ttt 1
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Estimation of model parameters (cont’d)

@ We come up with the model
Y =1¢,C+ H=,C+ 1v'DX + 1u’ + E

and make a one-to-one transformation

1Y p€,C + py'DX + pu’ + 1'E
HY | = H'H=,C + HE :
A°'Y A°E

where A° for a matrix A is such that A°A = 0 and
C(A°) = C(A)l.
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Estimation of model parameters (cont’d)

After calculation, the maximum likelihood estimators are given by

/

= :(H’H>_H’YC’(CC’)_ n (H’H)OTl + HHT, (cc'>°

~ :% [I’YX’D’ ~1'YC/(CC')~CX'D’ — pT3<CC’)OCX’D’}
X [DXX’D’ . Dxc'(cc’)—c] )

g :(%w - ?Dx) c/(CC) + T(CC’)O

for some matrices T, T, T, and T3 of proper sizes.

Innocent Ngaruye, Linkdping University, Sweden Small Area Estimation under the Growth Curve model



Estimation of model parameters (cont’d)

@ Once 5’1 and =, are obtained, we can then find the parameter
matrix B by solving the linear system

1€,C + HZ,C = ABC.
Since, the matrices A and C are of full rank, then

B — (A'A)—lA'(1£;c + Hfzc)c'(cc')—l.
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Estimation of model parameters (cont’d)

@ Given the covariance structure of Y
=131+ X, = mo21l + o2l

and its inverse

1 2
pio L, My
02 mpo?2 + o2

@ We find the maximum likelihood estimator of the variance
component axpressed by
o _ tr{11'W} — Npo?

oy

Y

Nmp?
where

W = (Y — ABC — 19/DX)(Y — ABC — 1+/DX)’.
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Prediction of random effects

@ Under the theory of linear model and normal distribution, the best
linear predictor of u that minimizes the mean square error is the
conditional mean E[u|Y] given by

E[u|Y] = E[u] + Cov(u',Y)Cov_l(Y)(Y — E[Y)).
@ Thus,

i =521'S (Y — ABC — 19/D'X)
~2
g
— %Y - ABC - 19'D'X
mpa2 + o2 ( v )
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Simulation study Example

We consider 6 small areas and draw a sample with the following sample
sizes.

Table : Sample sizes

Area | Group 1 | Group 2 | Total
1 n11:52 n12:48 n1:100

2 n21:60 n22:60 n2:120

3 n31:30 n32:40 n3:70

4 n41:46 n42:22 n4:68

5

6

n51:65 n52:65 n5:130
n61:50 n62:62 n6:112
m=6 | gg=303 | g,=297 | n=600

We assume p =4 and r = 3.
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Simulation study Example (cont’d)

The design matrices are

11 ~15
1 2 05

A=y 3| H=1] 95|
1 4 1.5
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Simulation study Example (cont’d)

The parameter matrices are

€ =1(20 21 22 23 24 25 26 27 28 29 30 31),
==(123456789 10 11 12),

B=A" (15'1c + H52c> c-

=175 16 145 13 115 10 85 7 55 4 25 1
1 2 3 4 5 6 7 8 9 10 11 12

bl

and
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Simulation study Example (cont’d)

Then, the data are generated from
Y ~ N,,(ABC + 14'DX, X, 1,),

where the matrix of covariates X is generated with random elements.
The following MLEs are obtained:

€ = (202534 21.6548 225061 23.6486 24.4233 25.0374 2590t
28.5361 29.9077 30.3292 31.1121 )
=, = (11151 2.0824 3.0320 3.6376 4.6384 5.7882 7.0238 7.87
9.0386 10.1256 10.8561 11.9422 )
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Simulation study Example (cont’d)

B_ 17.4657 17.3902 14.0748 14.5546 12.8274 10.5669 8.439C
-\ 1.1151 2.0824 3.0320 3.6376 4.6384 5.7882 7.0238

5.9397 45936 3.1890 1.2566
9.0386 10.1256 10.8561 11.9422

] 1.0093 105 . 20 . %
=50061, ¥=|19501|, ABC=|_ ' = > . 3
3.0469 215 .- 24 ... 49

18.5808 --- 18.4726 --- 13.1988

ABC — 19.6959 --- 20.5550 --- 25.1410

~ | 20.8110 --- 22.6373 --- 37.0833

21.9261 --- 24.7197 --- 49.0255
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Further research

@ After obtaining all unkown parameters, then we can find directly the
target small area characteristics of interest such as the small area
totals and samall area means

@ In further research, we want to test the efficiency, the distribution
and all properties of the estimators

@ We wish also to study the possible time correlation
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