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Statistical Challenge

I For reporting small area estimates precision measures are
necessary.

I For some small area models analytical approximation to the
MSE exist.

I Other models require resampling methods.

I One possible resampling method is the Parametric Bootstrap.
I For complex models computational expensive
I Challange Is there a way to reduce the computational burden

for PB MSE estimation?
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PB MSE Estimator I
Recalling the parametric bootstrap method for estimating the MSE
of a small area estimate

MSE∗d ,EST = E∗
[
(ψ∗d − ψ̂∗d)2

]
.

where ψ∗d is the true value for one realisation of the
superpopulation model defined by the used model, and ψ̂∗d being
the estimate given the same realisation. Now the right hands side is
written in function of the distribution of y |X ,Z .

MSE∗d ,EST =

∞∫
−∞

. . .

∞∫
−∞

(ψd − ψ̂d ,EST)
2fy |X ,Z (u1, . . . , uD , e1 . . . , eD)

du1 . . . duD de1 . . . deD .
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PB MSE Estimator II

Beautifying the equation one can write h(u) := (ψd − ψ̂d ,FH)
2 and

fu,e := fy |X ,Z .
Then the MSE estimate obtains the form

MSE∗d ,EST =

∞∫
−∞

. . .

∞∫
−∞

h(u)fu,e(u1, . . . , uD , e1 . . . , eD)

du1 . . . duD de1 . . . deD .

I E.g. multivariate normal probability distribution function fu,e
does not have a closed form integral

7→ The equation above generally will not be tractable analytically.
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MSE Estimator III

I Two possible approaches
I Numerical approximation (curse of dimensionality Donoho,

2000)
I Monte-Carlo approximation (classical parametric bootstrap)

I It follows so far, that the parametric bootstrap may be written
as a special case of a Monte-Carlo integration problem.

I Thus, methods to improve estimates gained by Monte-Carlo
integration may be helpful in estimating the parametric
bootstrap MSE estimate as well.
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Variance Reduction Methods I

I The Monte-Carlo approximation of an integral often is not
efficent

I Variance reduction methods try to
I reduce the variance of the resulting estimate
I whilst obtaining the same estimate as in plain Monte-Carlo

I If the variance is reduced it follows, that for a given precision
less resamples are nedded.

7→ Reduction of the computational burden.
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Variance Reduction Methods II

I Latin Hypercube-Sampling
7→ Did not show to improve the variance in the simulations

performed
I Control Variables
I Variance reduction in bootstraps is presented by Hesterberg

[1996].
I Here translated for the PB-MSE estimation
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Control Variables I
Let h(u, e) be the random variable produced within the parametric
bootstrap. Then a function g(u, e) is defined with known mean g .
Instead of now calculating the expectation of h via

E [h(u, e)] =
1
R

R∑
r=1

h(u(r), e(r)) ,

the control variate is introduced as a correction term

E [h(u, e)]CV =
1
R

R∑
r=1

h(u(r), e(r)) + c
(
g(u(r), e(r))− g

)
. (1)

As E
[
g(u(r), e(r))

]
= g and c is a constant it follows that

E
[
c
(
g(u(r), e(r))− g

)]
= 0 and therefore

E [h(u, e)]CV = E [h(u, e)].
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Control Variables II
The optimal constant c is given by

c =
COV [h(u, e), g(u, e)]

V [g(u, e)]
(2)

Reduction of the variance by the rate of COR [h(u, e), g(u, e)]2.
In practice, both COV [h(u, e), g(u, e)] and V [h(u, e)] are not
known. Following Hesterberg [1996] these terms may be computed
from the bootstrap resamples.

ĉ =
ĈOV [h(u, e), g(u, e)]

V̂ [g(u, e)]
(3)

The estimation induces a bias of order O( 1
R
).
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Control Variables III

I The central issue in order to apply this method is to define a
function g(u, e),

I which has a known mean
I and preferably a strong correlation with h(u, e).

I Proof of concept a control variate for the PB-MSE estimate
for the FH is derived
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The Fay-Herriot Estimator I
Fay and Herriot [1979] proposed the so called Fay-Herriot estimator
(FH) for the estimation of the mean population income in a small
area setting.

I Covariates only available at aggregate level.
I Covariates are true population parameters, e.g. population

means X .
I Direct estimates µ̂d ,direct are used as dependent variable.

I Only one observation per area.

I The model they use may be expressed as

µ̂d ,direct = Xβ + ud + ed .

ud ∼ N(0, σ2
u) and ed ∼ N(0, σ2

e,d)
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The Fay-Herriot Estimator II

The FH is the prediction from this mixed model and is given by

µ̂d ,FH = X d β̂ + ûd , (4)

ûd =
σ̂2
u

σ̂2
u + σ2

e,d

(µ̂d ,direct − X β̂) .

I σ̂2
u and β̂ are estimates

I σ2
e,d , d = 1..D are assumed to be known
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Control Variables for the FH I

h(u, e) in the case for the estimation of a mean with the FH is
given by

h(u, e)d ,FH = (µ̂∗d ,FH(X β̂, u
∗, e∗)− µ∗d(X β̂, u∗, e∗))2 (5)

=
[(

X d β̂
∗ + γ∗d((X β̂ + u∗d + e∗d)− X β̂∗)

)
− X d β̂ + u∗d

]2
and assuming that

β̂ ≈ β̂∗
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Control Variables for the FH II

this may be approximated by

h(u, e)d ,FH ≈ ḣ(u, e)d ,FH = (γ∗d (u
∗
d + e∗d)− u∗d)

2 (6)

= ((γ∗d − 1)u∗d + γ∗de
∗
d)

2 ,

and by further assuming that

(σ̂u, σ̂e,d) ≈ (σ̂∗u, σ̂
∗
e,d) (7)

ḧ(u, e)d ,FH = ((γd − 1)u∗d + γde
∗
d)

2 ,

where u∗ and e∗ for area d are independently normally distributed
with mean 0 and variances σ̂2

u and σ̂2
e,d .
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Control Variables for the FH III

Four choices for g(u, e) then may be

g
(1)
d (u, e) = (u + e)2 g

(1)
d = σ2

u + σ2
e,d , (8)

g
(2)
d (u, e) = ((γd − 1)u + γde)

2 g
(2)
d = (γd − 1)2σ2

u + γ2
dσ

2
e,d ,

(9)

g
(3)
d (u, e) = (u)2 g

(2)
d = σ2

u , (10)

g
(4)
d (u, e) = (e)2 g

(3)
d = σ2

e,d . (11)
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Control Variables for the FH IV
The correlations of these four functions with the approximation ḧ of
h are

COR
[
ḧ(u, e)d ,FH, g

(1)
d (u, e)

]
= 0 , (12)

COR
[
ḧd ,FH, g

(2)
d (u, e)

]
= 1 , (13)

COR
[
ḧd ,FH, g

(3)
d (u, e)

]
=

σ2
e,d

2(σ2
e,d + σ2

u)
, (14)

and

COR
[
ḧd ,FH, g

(4)
d (u, e)

]
=

σ2
u

2(σ2
e,d + σ2

u)
. (15)
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Setup of the Monte-Carlo Simulation I

yd ∼ N(xdβ + ud , σ
2
e,d)

xd ∼ MVN
(
(20, 10),

(
5 0
0 3

))
ud ∼ N(0, σ2

u)

The xd , ud are generated only once, while the yd = xdβ + ud + ed
are generated for every run randomly by drawing the ed from a
multivariate normal distribution with means zero and variance
covariance matrix (σ2

e,1, .., σ
2
e,D)I(D).
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Setup of the Monte-Carlo Simulation II
population D σ2

e,d σ2
u

1 15 U(3, 7) 5
2 40 U(3, 7) 5
3 100 U(3, 7) 5
4 15 U(0.01, 0.1) 15
5 40 U(0.01, 0.1) 15
6 100 U(0.01, 0.1) 15
7 15 U(3, 7) 0.1
8 40 U(3, 7) 0.1
9 100 U(3, 7) 0.1

10 15 U(.1, 7) 5
11 40 U(.1, 7) 5
12 100 U(.1, 7) 5
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Number of parametric bootstrap resamples r=1...R
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Summary and Outlook I

I The need to reduce computational burden when using
parametric bootstrap MSE estimates is apparent.

I Many small area estimators require a lot of computation time
for computing a single estimate.

I The use of control variates has been shown to be a
computational easy implementable and reliable method.

I In some populations, the reduction of the needed resamples for
a certain variability of the MSE estimate could be reduced by
over 90%.

I This truly enables almost real-time computations of the
parametric bootstrap MSE estimate.
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Summary and Outlook II

I Only when σ2
u is very small, caution must be laid on the

variance estimation method.
I Use generalized and adjusted maximum likelihood methods as

proposed by Lahiri and Li [2009], Li and Lahiri [2007, 2010],
and Yoshimori and Lahiri [2012].
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