Small area estimators

Model selection

Analyzing discontinuities

Results discontinuities C

Conclusions

Small area estimation to quantify discontinuities in sample surveys

Jan A. van den Brakel¹² Bart Buelens¹ Harm-Jan Boonstra¹

First Asian ISI Satellite Meeting on Small Area Estimation, Bangkok, Thailand, 1-4 September 2013.

¹Statistics Netherlands, Department of Statistical Methods ²Maastricht University, Department of Quantitative Economics

Outline

- 2 Small area estimators
- 3 Model selection
- Analyzing discontinuities
- 5 Results discontinuities

6 Conclusions

- Survey \rightarrow measurement error: $y_{k,i} = u_{k,i} + b_i + e_{k,i}$
- Survey redesign → affects measurement error: b_i
- Discontinuities: $\Delta_i = y_i^{(a)} y_i^{(r)}$
- Quantification through a parallel run:
 - Regular survey full sample size: direct estimators $\hat{y}_i^{(r)}$
 - Alternative sample reduced sample size: small area estimation for
 *y*_i^(a)
 - Additional auxiliary information: direct estimates regular survey $\hat{y}_i^{(r)}$

This paper:

- Direct estimates regular survey $\hat{y}_i^{(r)}$ as additional information in models for small area estimators
- Variance estimation discontinuities: $var(\hat{\Delta}_i) = var(\hat{y}_i^{(r)}) + var(\tilde{y}_i^{(a)}) - 2cov(\hat{y}_i^{(r)}, \tilde{y}_i^{(a)})$

Redesign Crime Victimization Survey (CVS) in 2008:

- Regular (new) survey design (ISM):
 - Stratified simple random sampling, with 25 police regions as strata
 - Sample size: 19000 responses (about 750 per domain)
 - GREG estimator domains: $\hat{y}_i^{(r)}$
- Alternative (old) survey (NSM):
 - Stratified simple random sampling, with 25 police regions as strata
 - Sample size: 6000 responses (proportional allocation)
 - SAE domains: $\tilde{y}_i^{(a)}$

Small area estimators

Auxiliary information

- Municipal Basic Administration (gender, age, household size, nationality, urbanization, municipality, province, etc.)
- Police Register of Reported Offences
- Direct estimates target variable and related variables from the regular survey
- Direct estimates preceding editions of the survey

Area level model (Fay and Herriot, 1979):

$$\begin{aligned} \hat{y}_i^{(a)} &= y_i^{(a)} + \boldsymbol{e}_i = z_i^t \beta + \boldsymbol{v}_i + \boldsymbol{e}_i, \\ \boldsymbol{v}_i \stackrel{\text{iid}}{\sim} \mathcal{N}(\boldsymbol{0}, \sigma_{\boldsymbol{v}}^2), \quad \boldsymbol{e}_i \stackrel{\text{ind}}{\sim} \mathcal{N}(\boldsymbol{0}, \psi_i) \end{aligned}$$

ction Small area estimators

Small area estimators

 EBLUP for auxiliary variables with error (Ybarra and Lohr, 2008)

$$\begin{split} \tilde{y}_{i}^{(a)} &= \hat{\gamma}_{i} \hat{y}_{i}^{(a)} + (1 - \hat{\gamma}_{i}) \hat{z}_{i}^{t} \hat{\beta}, \\ \hat{\gamma}_{i} &= \frac{\hat{\sigma}_{v}^{2} + \hat{\beta}^{t} \widehat{cov}(\hat{z}_{i}) \hat{\beta}}{\hat{\sigma}_{v}^{2} + \hat{\beta}^{t} \widehat{cov}(\hat{z}_{i}) \hat{\beta} + \psi_{i}}, \end{split}$$

Standard EBLUP (Rao, 2003)

$$\begin{split} \tilde{y}_i^{(a)} &= \hat{\gamma}_i \hat{y}_i^{(a)} + (1 - \hat{\gamma}_i) Z_i^t \hat{\beta}, \\ \hat{\gamma}_i &= \frac{\hat{\sigma}_v^2}{\hat{\sigma}_v^2 + \psi_i}, \end{split}$$

Solution Hierarchical Bayesian approach (Rao, 2003, Section 10.3). Posterior mean and variance for the area level model with a flat prior on β and σ_{ν}^2 .

Model selection

Procedure:

- Step forward variable selection
- Criterion: conditional AIC
- Penalty: trace of the "hat" matrix $\hat{y} = Hy$

Percentage improvement in coefficient of variation of the HB estimates compared to the direct estimates for optimal models based on different sets of covariates.

variable	admin	+ Police register	+ ISM
offtot	47%	49%	56%
unsafe	24%	29%	37%
nuisance	29%	35%	51%
satispol	50%	50%	55%
propvict	49%	49%	51%

Model selection

Optimal models

variable	cAIC-based model				
offtot	REG_victim				
unsafe	REG_nuisance, ADM_benefit, PR_propcrim,				
	PR_drugs				
nuisance	REG_nuisance, ADM_old				
satispol	REG_funcpol				
propvict	PR_propcrim, ADM_old				

All models also include an intercept (not shown).

- REG_*: direct estimate regular survey
- PR_*: Police Register of Reported Offences
- ADM_*: Municipal Basic Administration

Discontinuity:
$$\hat{\Delta}_i = \hat{y}_i^{(r)} - \tilde{y}_i^{(a)}$$

$$\text{Variance } \textit{var}(\hat{\Delta}_i) = \textit{var}(\hat{y}_i^{(r)}) + \textit{MSE}(\tilde{y}_i^{(a)}) - 2\textit{cov}(\hat{y}_i^{(r)}, \tilde{y}_i^{(a)}).$$

Problem:

•
$$\tilde{y}_i^{(a)} = \hat{\gamma}_i \hat{y}_i^{(a)} + (1 - \hat{\gamma}_i) \hat{z}_i^t \hat{\beta}$$

- *^β* contain survey estimates from the regular survey (same target variable or related variables):
 - Design correlation between $\hat{y}_i^{(r)}$ and $\tilde{y}_i^{(a)}$
 - Nonlinear term: $\hat{z}_i^t \hat{\beta}$

Covariance $cov(\hat{y}_i^{(r)}, \tilde{y}_i^{(a)})$:

- First order Taylor approximation for $\hat{z}_i^t \hat{\beta}$ around z_i and $y_i^{(a)}$.
- Approximation for $cov(\hat{y}_i^{(r)}, \tilde{y}_i^{(a)})$:

$$(1-\hat{\gamma}_i)[(1-\hat{\gamma}_i\hat{z}_i^t\hat{T}^{-1}\hat{z}_i)\hat{\beta}^t+\hat{\gamma}_i(\hat{\theta}_i-\hat{\beta}^t\hat{z}_i)\hat{z}_i^t\hat{T}^{-1}]\widehat{cov}(\hat{y}_i^{(r)},\hat{z}_i),$$

with:

- $\hat{\beta} = \hat{T}^{-1}\hat{t}, \quad \hat{T} = \sum_{i=1}^{m} \hat{\gamma}_i \hat{z}_i \hat{z}_i^t, \quad \hat{t} = \sum_{i=1}^{m} \hat{\gamma}_i \hat{z}_i \hat{\theta}_i$
- cov(
 ŷ_i^(r),
 z_i): vector with design covariances between
 ŷ_i^(r)
 and
 z_i

$$var(\hat{\Delta}_{i}) = var(\hat{y}_{i}^{(r)}) + MSE(\tilde{y}_{i}^{(a)}) - 2cov(\hat{y}_{i}^{(r)}, \tilde{y}_{i}^{(a)}).$$

 $MSE(\tilde{y}_{i}^{(a)}):$

- Posterior variance of the HB estimator
- Oesign-based approximation:
 - Taylor approximation for $\tilde{y}_i^{(a)}$ around z_i and $y_i^{(a)}$
 - Approximation for $MSE(\tilde{y}_i^{(a)})$:

$$\begin{split} \hat{\gamma}_{i}^{2}\widehat{var}(\hat{y}_{i}^{(a)}) \ + \ (1 - \hat{\gamma}_{i})^{2} \left[\sum_{j=1}^{m} \hat{B}_{i,j}\widehat{cov}(\hat{z}_{j})\hat{B}_{i,j}^{t} + \sum_{j=1}^{m} \hat{C}_{i,j}^{2}\widehat{var}(\hat{y}_{j}^{(a)}) \right] \\ + \ 2\hat{\gamma}_{i}(1 - \hat{\gamma}_{i})\hat{C}_{i,i}\widehat{var}(\hat{y}_{i}^{(a)}), \end{split}$$

with

$$\begin{aligned} \hat{B}_{i,j} &= (\delta_{i,j} - \hat{\gamma}_j \hat{z}_i^t \hat{T}^{-1} \hat{z}_j) \hat{\beta}^t + \hat{\gamma}_j (\hat{y}_j^{(a)} - \hat{z}_j^t \hat{\beta}) \hat{z}_i^t \hat{T}^{-1}, \\ \hat{C}_{i,j} &= \hat{z}_i^t \hat{T}^{-1} \hat{z}_j \hat{\gamma}_j. \end{aligned}$$

Three estimators for
$$var(\hat{\Delta}_i) = var(\hat{y}_i^{(r)}) + MSE(\tilde{y}_i^{(a)}) - 2cov(\hat{y}_i^{(r)}, \tilde{y}_i^{(a)})$$
:

- Posterior variance of the HB estimator for $MSE(\tilde{y}_i^{(a)})$
- 2 Design-based approximation for $MSE(\tilde{y}_i^{(a)})$
- Bootstrap approximation
 - Draw repeatedly bootstrap samples from the original sample (regular and alternative sample)
 - Calculate $\hat{\Delta}_{i,b} = \hat{y}_{i,b}^{(r)} \tilde{y}_{i,b}^{(a)}, b = 1, \dots, B$

•
$$\widehat{var}(\hat{\Delta}_i) = \frac{1}{B} \sum_{b=1}^{B} (\hat{\Delta}_{i,b} - \overline{\hat{\Delta}}_i)^2$$

Results discontinuities

Comparison HB point and SE estimates with bootstrap results averaged over districts.

variable		Analytic	Bootstrap		
	HB est.	SE(1)	SE(2)	HB est.	SE
offtot	33.21	2.43	2.90	33.29	3.13
unsafe	19.83	1.76	1.64	19.84	1.92
nuisance	1.29	0.06	0.08	1.28	0.08
satispol	55.09	3.00	2.54	55.29	3.58
propvict	9.85	1.09	0.84	9.88	1.12

Results discontinuities

Analysis results discontinuities averaged over districts.

variable	Analytic		Bootstrap		GREG		
	Disc.	SE(1)	SE(2)	Disc.	SE	Disc.	SE
offtot	9.08	3.54	3.92	9.02	4.92	9.01	7.69
unsafe	4.55	2.54	2.46	4.54	2.69	4.52	3.57
nuisance	0.33	0.05*	0.07	0.33	0.11	0.33	0.17
satispol	5.52	4.98	4.72	5.33	5.43	5.04	8.21
propvict	2.70	1.95	1.84	2.70	1.97	2.78	2.77

*: For nuisance 2 districts with negative variance estimates for the estimated discontinuity are truncated at zero.

Conclusions

- Additional information regular survey useful for SAE models (substantial reduction standard errors)
- Variance approximations:
 - Design-based covariance approximation
 - Design-based approximation MSE of SAE predictions
 - Avoids negative variance estimates
- Alternative (further research): bivariate area level model