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Empirical Bayes estimator under the Fay-Herriot model

The Fay Herriot Bayesian Model

Ref: Fay and Herriot (JASA, 1979)

For i = 1, · · · , m,

Level 1: (Sampling Distribution): yi |θi ∼ N(θi , Di );

Level 2: (Prior Distribution): θi ∼ N(x′iβ, A)

where

m : number of small area;

yi : direct survey estimate of θi ;

θi : true mean for area i ;

xi : p × 1 vector of known auxiliary variables;

Di : known sampling variance of the direct estimate;

The p × 1 vector of regression coefficients β and model variance A are
unknown.
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Empirical Bayes estimator under the Fay-Herriot model

Bayes Estimator of θi

The purpose is to predict a true mean for i area, θi

When model variance A is known, the following Bayes estimator of θi is obtained
by minimizing MSE (θ̂i ) among all linear unbiased predictors of θi , where
MSE (θ̂i ) = E [(θ̂i − θi )

2] and E is the expectation with respect to the Fay-Herriot
model:

θ̂B
i = (1− Bi )yi + Bix

′
i β̂,

where

Bi ≡ Bi (A) = Di

A+Di

β̂ ≡ β̂(A) = (X ′V−1X )−1X ′V−1y where
V ≡ V (A) = diag(A + D1, · · · , A + Dm).
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Empirical Bayes estimator under the Fay-Herriot model

Empirical Bayes (EB) Estimator of θi

Let model variance Â be a consistent estimator of A, for large m.

An EB of θi is given by

θ̂EB
i = (1− B̂i )yi + B̂ix

′
i β̂.

where

B̂i = Di

Â+Di

β̂ = β̂(Â)

Ref: Efron and Morris (JASA, 1975), Fay and Herriot (JASA, 1979)
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Confidence Interval

Confidence Interval for θi

An interval, denoted by Ii , is called a 100(1− α)% interval for θi if

P(θi ∈ Ii |β, A) = 1− α, ∀β ∈ Rp, A ∈ R+,

where

the probability P is with respect to the joint distribution of
{(yi , θi ), i = 1, · · · , m} under the Fay-Herriot model;

R+ is the positive part of the real line.

Small Area Estimation (2013) at Bangkok September 4th, 2013 6 / 20



. . . . . .

Confidence Interval

A General Form of Confidence Interval for θi

Most of the intervals proposed in the literature can be written as:

(θ̂i + q1(α)τ̂i (θ̂i ), θ̂i + q2(α)τ̂i (θ̂i ))

where

θ̂i is an estimator of θi ;

τ̂i (θ̂i ) is an estimate of the measure of uncertainty of θ̂i ;

q1(α) and q2(α) are chosen suitably in an effort to attain coverage
probability close to the nominal level 1− α.
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Confidence Interval

Direct Confidence Interval

The choice θ̂i = yi leads to the direct interval ID
i given by

ID
i : yi ± zα/2

√
Di ,

where zα/2 is the upper 100(1− α/2)% point of N(0, 1).

Remarks:

The coverage probability is 1− α;

When Di is large, the length is too large to make any reasonable conclusion.
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Confidence Interval

Synthetic Confidence Interval

Ref: Hall and Maiti (JRSS, 2006)

(x ′i β̂ + q1(α)
√

Â, x ′i β̂ + q2(α)
√

Â)

where

Â are consistent estimators of A. For example, residual maximam likelihood
estimator (REML).

L∗i [q2(α)]− L∗i [q1(α)] = 1− α where L∗i is a parametric bootstrap

approximation of the distribution Li of
θi−x′i β̂√

Â
.

Remarks:

The method is synthetic (Rao 2005).

This approach could be useful in situations especially when yi is missing for
the ith area.
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Confidence Interval

Bayesian Credible Interval

Assume β and A are known.

IB
i (A) : θ̂B

i (A)± zα/2σi (A),

where

θ̂B
i ≡ θ̂B

i (A) = (1− Bi )yi + Bix
′
i β,

Bi ≡ Bi (A) = Di

Di+A ,

σi (A) =
√

ADi

A+Di

Remarks:

θi |yi ; β, A ∼ N[θ̂B
i (A), g1i = σ2

i (A)].

The Bayesian credible interval cuts down the length of the direct confidence
interval by 100× (1−√1− Bi )%

The maximum benefit from the Bayesian methodology is achieved when Bi is
near 1.
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Confidence Interval

Empirical Bayes Confidence Interval

Ref: Cox (1975)
ICox
i (Â) : θ̂EB

i (Â)± zα/2σ(Â),

where

xT
i β = µ is estimated by the sample mean ȳ = m−1

∑m
i=1 yi and

A by the ANOVA estimator:
ÂANOVA = max

{
(m − 1)−1

∑m
i=1(yi − ȳ)2 − D, 0

}
.

Remarks:

The length of the Cox interval is smaller than that of the direct interval.

The distribution of
θi−θ̂EB

i

σ(Â)
is not a standard Normal. Thus, it is not

appropriate to use the Normal quantile zα/2 as the cut-off points.

The Cox empirical Bayes confidence interval introduces a coverage error of
the order O(m−1), not accurate enough in most small area applications.

length of the interval is zero when ÂANOVA = 0
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Confidence Interval

Other EB Confidence Intervals

.

.
.

1 Replace σ(Â) by a measure of uncertainty that captures uncertainty due to
estimation of the hyperparameters β and A (e.g.,

√
g1i + g2i + 2g3i ) (Ref:

Morris (JASA, 1983) Prasad and Rao (JASA, 1990))

.

.

.

2 Replace zα/2 by zα/2ci (Â) to reduce the coverage error to O(m−1.5) (Datta
et al., Scand. Stat. 2002; Basu et al. 2003; Sasase and Kubokawa, JRSS.,
2005; Yoshimori, Comm. Stat., 2013)

.

.

.

3 Parametric bootstrap (Laird and Louis, JASA 1987; Carlin and Louis 1996;
Chatterjee et al., AS 2008)
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Confidence Interval

Parametric Bootstrap Confidence Interval

Ref: Chatterjee, Lahiri and Li (AS, 2008)

Use the distribution of
θ∗i −θ̂EB∗

i

σi (Â∗)
to approximate the distribution of

θi−θ̂EB
i

σi (Â)
.

Compute β̂ and Â;

Draw bootstrap sample from the following bootstrap model:

(i) y∗i |θ∗i ind∼ N(θ∗i , Di )

(ii)θ∗i
ind∼ N(x ′i β̂, Â)

Compute β̂∗ and Â∗ from y∗. Then we have θ̂EB∗
i = (1− B̂∗)y∗i + B̂∗x

′
i β̂
∗,

and σ2
i (Â

∗) = A∗Di

A∗+Di
;

Compute (θ∗i − θ̂EB∗
i )/σi (Â

∗).

Remarks:

When REML estimates gets zero, we need to truncated by some small values.
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Confidence Interval

Parametric Bootstrap Confidence Interval

.

Parametric Bootstrap Confidence Interval

.

.

.

. ..

.

.

CIPB
i = [θ̂EB

i + q1(α)σi (Â), θ̂EB
i + q2(α)σi (Â)],

where L∗i [q2(α)]− L∗i [q1(α)] = 1− α, and L∗i is a parametric bootstrap approx. of

the distribution of
θi−θ̂EB

i

σi (Â)
.

.

Theorem

.

.

.

. ..

.

.

Under reg. cond. Pr(θi ∈ CIPB
i ) = 1− α + O(m−1.5),
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Confidence Interval

A Research Question

Which of the confidence intervals one should use when REML is used to estimate
A?

Restricted Maximum Likelihood estimator (REML estimator)

ÂRE = max{arg max
0<A<∞

|X ′V−1(A)X |−1/2|V |−1/2 exp{−1

2
y ′Py} × K , 0}

where K is a generic constant free from A and
P ≡ P(A) = V−1 − V−1X (X ′V−1X )−1X ′V−1.
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Simulation study

Simulation set-up: The Fay-Herriot Model with Unequal
Sampling Variances

m = 15, 45,
x ′i β = 0, A = 1
There are two patterns of sampling variance Di ;

Pattern (a){0.7, 0.5, 0.4, 0.3},
Pattern (b){20, 6, 5, 4, 2}.

(When REML estimate gets zero, we truncated it as 0.01.)

CLL:the parametric bootstrap confidence interval (Chatterjee et al, 2008);
HM:Synthetic Confidence interval (Hall and Maiti, 2006);
Cox:Cox empirical confidence interval (Cox, 1975);
PR:the method which is used second order unbiased estimator of MSE (Prasad
and Rao, 1990);
Y:the method, which zα/2 is replaced by zα/2ci (Â) for some ci , (Under the
Fay-Herriot model, Yoshimori, 2003).
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Simulation study

Simulation Results 1

m=15, Pattern (a){0.7, 0.5, 0.4, 0.3}, Pattern (b){20, 6, 5, 4, 2}.

Table: Average coverage and length for difference confidence intervals (average taken
over the three areas within each group); nominal level=0.95

Group CLL HM Cox PR Y

Pattern (a)
1 97.5 (3.4) 97.9 (5.1) 90.3 (2.4) 93.8 (2.6) 96.5 (3.7)
2 97.4 (3.3) 98.0 (5.1) 90.6 (2.3) 94.0 (2.5) 96.2 (3.5)
3 97.2 (3.0) 97.9 (4.9) 90.7 (2.1) 94.3 (2.4) 96.2 (3.4)
4 97.2 (2.8) 97.8 (4.8) 91.0 (2.0) 94.5 (2.2) 96.1 (3.2)
5 97.0 (2.4) 97.5 (4.6) 91.7 (1.8) 95.1 (2.0) 96.1 (2.9)

Pattern (b)
1 84.8 (23.7) 84.8 (25.0) 61.9 (3.2) 88.9 (4.8) 100.0 (3421.6)
2 85.3 (20.2) 85.3 (23.4) 61.9 (2.9) 95.1 (5.1) 99.9 (3419.2)
3 85.8 (19.4) 85.8 (22.9) 62.0 (2.8) 96.1 (5.1) 99.9 (3418.5)
4 86.0 (18.2) 86.0 (22.2) 62.0 (2.7) 97.4 (5.2) 99.8 (3417.6)
5 87.6 (13.9) 87.6 (19.1) 62.7 (2.4) 99.1 (5.4) 99.5 (3413.3)
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Simulation study

Simulation Results 2

m=45, Pattern (a){0.7, 0.5, 0.4, 0.3}, Pattern (b){20, 6, 5, 4, 2}.

Table: Average coverage and length for difference confidence intervals (average taken
over the three areas within each group); nominal level=0.95

Group CLL HM Cox PR Y

Pattern (a)
1 95.0 (2.6) 95.3 (4.0) 93.6 (2.5) 94.5 (2.6) 94.8 (2.6)
2 95.1 (2.5) 95.2 (4.0) 93.8 (2.4) 94.6 (2.4) 94.9 (2.5)
3 95.1 (2.3) 95.2 (4.0) 94.0 (2.2) 94.8 (2.3) 95.1 (2.3)
4 95.1 (2.2) 95.3 (4.0) 94.2 (2.1) 94.8 (2.1) 95.0 (2.1)
5 95.0 (1.9) 95.2 (3.9) 94.2 (1.9) 94.8 (1.9) 95.0 (1.9)

Pattern (b)
1 88.7 (13.0) 88.6 (13.4) 75.1 (3.4) 85.9 (4.0) 99.9 (585.9)
2 88.7 (12.0) 88.7 (13.1) 75.3 (3.1) 90.4 (4.0) 99.8 (585.1)
3 89.0 (11.7) 89.0 (13.0) 75.5 (3.1) 91.6 (4.0) 99.8 (584.9)
4 89.0 (11.3) 89.0 (12.8) 75.4 (3.0) 92.6 (4.0) 99.7 (584.7)
5 89.5 (9.6) 89.5 (12.0) 75.6 (2.7) 96.3 (3.9) 99.6 (583.4)
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Conclusion

Conclusion

We compared the performances of several confidence intervals using the REML
estimator of A.
Our simulation results

All intervals perform well except for the Cox empirical Bayes confidence
interval in pattern (a).

The method based on the Taylor serious approximation can have large length
for pattern (b).

Overall, CLL and HM have similar coverage but CLL has usually shorter
length than the HM method; both methods seems to have an under-coverage
problem for pattern (b) even when we increase m from 15 to 45.

REML method is not suitable for small area inference even when using a
parametric bootstrap method.

As future study
We must improve the empirical prediction interval in order to find a better
estimator than that of the REML for the unknown variance parameter A.
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Conclusion
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