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Introduction to SAE and Benchmarking

Small area estimation is about disaggregating
surveys to small noisy subgroups.
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Introduction to SAE and Benchmarking

An area i is small if the sample size is not large enough to support
direct estimates θ̂i of adequate precision.

• An “area” could be geographic, demographic, etc.

• Borrow strength from related areas.

• Hierarchical and Empirical Bayes methods.
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Introduction to SAE and Benchmarking

Many applications have multiple levels of resolution
that call for aggregating estimates.
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Benchmarking

• Model-based estimates for small areas often do not aggregate
to the direct estimates for larger areas.

• Having model-based estimates that do aggregate properly is
often a political necessity.

Benchmarking

Benchmarking is adjusting model-based estimates such that they
aggregate to direct estimates for larger areas.

Helps deal with possible model misspecification and overshrinkage.
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Benchmarking

Goals: Develop general class of benchmarked Bayes estimators
and explore effects on the MSE.
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One-Stage Benchmarking

In Datta et al. (2011), we extend Wang et al. (2008), developing a
general class of benchmarked Bayes estimators.

• No distributional assumptions.

• Linear or nonlinear estimators.

• Benchmark the weighted mean and/or weighted variability.

• Multivariate version.

• Includes many previously proposed estimators as special cases.
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One-Stage Benchmarking

Objective

Minimizing a posterior risk

min
δ

m∑
i=1

φiE [(δi − θi )2|θ̂]

subject to the benchmarking constraint(s)

m∑
i=1

wiδi = t and possibly
m∑
i=1

wi (δi − t)2 = h .

• Derive the benchmarked Bayes estimators θ̂
BM

in closed form.

• θ̂
BM

= Bayes estimator θ̂
B

plus a correction factor.
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MSE of Benchmarked Empirical Bayes Estimator

How does benchmarking affect
the errors of the estimates?
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MSE of Benchmarked Empirical Bayes Estimator

Using Fay-Herriot model and standard benchmarking constraint:

• Theoretically compare MSE [θ̂EB ] and MSE [θ̂EBM ].
• Builds off Prasad and Rao (1990) and Wang et al. (2008);

Ugarte et al. (2009).

• Derive two estimators of MSE [θ̂EBM ] (asymptotically unbiased
and parametric bootstrap).

• Evaluate methods using Small Area Income and Poverty
Estimate Program (U.S. Census Bureau).

[Steorts and Ghosh (2013)]
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MSE of Benchmarked Empirical Bayes Estimator

With m small areas, the increase
in MSE due to benchmarking is O(m−1).

This is shown via a second-order asymptotic expansion.
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MSE of Benchmarked Empirical Bayes Estimator

Preliminary Results

Consider the area-level effects model of Fay and Herriot (1979):

θ̂i |θi
ind∼ N(θi ,Di )

θi |β, σ2u
ind∼ N(x ′iβ, σ

2
u), i = 1, . . . ,m.

Assume Di is known and σ2u and β are unknown.

• Estimate σ2u by moment estimator σ̃2u. Then σ̂2u = max{σ̃2u, 0}.
• Estimate β by a GLS-type estimator.

• Derive the benchmarked empirical Bayes estimator θ̂EBM .
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MSE of Benchmarked Empirical Bayes Estimator

Preliminary Results

Theorem

MSE [θ̂EBMi ] = g1i (σ
2
u) + g2i (σ

2
u) + g3i (σ

2
u) + g4(σ2u) + o(m−1),

where

g1i (σ
2
u) =

Diσ
2
u

Di + σ2u
= O(1),

g2i (σ
2
u) ≈ diagonal of hat matrix hVii = O(m−1),

g3i (σ
2
u) ≈ noise in estimating σ2u = O(m−1),

g4(σ2u) ≈ avg. variance specific to each θ̂i = O(m−1).

• Note: MSE [θ̂EBi ] = g1i (σ
2
u) + g2i (σ

2
u) + g3i (σ

2
u) + o(m−1).

• The difference in MSEs is g4(σ2u).
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MSE of Benchmarked Empirical Bayes Estimator

Parametric Bootstrap

We extend the method of Butar and Lahiri (2003) to derive a
parametric bootstrap estimator V B-BOOT

i of MSE [θ̂EBMi ].

• Use parametric bootstrapping from Fay-Herriot model to
correct plug-in estimates of g1i (σ

2
u), g2i (σ

2
u), and g4(σ2u).

• Use the same bootstrap to estimate g3i (σ
2
u) directly.

• Combination is asymptotically unbiased:

E [V B-BOOT
i ] = MSE [θ̂EBMi ] + o(m−1).
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MSE of Benchmarked Empirical Bayes Estimator

Parametric Bootstrap

How does benchmarking perform in applications?
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Census Illustration

SAIPE: One-Stage

• Small Area Income and Poverty Estimates (SAIPE) program
(U.S. Census Bureau): model-based estimates of the number
of poor children (aged 5–17).

• Model-based state estimates were benchmarked to a direct
estimate of national child poverty by raking.

• Direct estimates came from from the Annual Social and
Economic (ASEC) Supplement of the Current Population
Survey (CPS) and the American Community Survey (ACS).

• Weights wi ∝ estimated number of children in each state.
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Census Illustration

SAIPE: One-Stage

Recall the model of Fay and Herriot (1979):

θ̂i |θi
ind∼ N(θi ,Di )

θi |β, σ2u
ind∼ N(x ′iβ, σ

2
u), i = 1, . . . ,m

• where Di > 0 are known,

• θi are the true state level poverty rates,

• θ̂i are the direct state estimates.

Employ EB on unknown β and σ2u.

17 / 24 Rebecca C. Steorts, beka@cmu.edu Small Areas, Benchmarking, and Political Battles



Small Areas, Benchmarking, and Political Battles

Census Illustration

Estimating the MSE

• We consider data from 1997 and 2000.

• The data from 2000 behaves as our theory indicates:
MSE[θ̂EBM ] are slightly larger than MSE[θ̂EB ].

• The same is true when we bootstrap.
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Census Illustration

Estimating the MSE

Table: Table of estimates for 1997

Estimates MSEs Bootstrap

i θ̂i θ̂EBi θ̂EBM1
i θ̂i θ̂EBi θ̂EBM1

i θ̂EBi θ̂EBM1
i

12 18.98 13.72 13.89 20.87 2.45 2.48 1.24 1.26
13 17.56 13.64 13.82 12.38 1.70 1.73 0.23 0.25
14 14.57 15.72 15.89 3.56 3.45 3.47 −0.06 −0.05
15 11.07 12.53 12.70 7.58 1.84 1.86 −0.23 −0.22
16 11.09 11.21 11.38 8.49 1.74 1.76 −0.24 −0.22
17 11.01 13.48 13.65 9.34 1.61 1.63 −0.15 −0.14
18 23.12 20.78 20.95 13.98 1.37 1.40 −0.12 −0.11
19 21.08 24.15 24.32 15.19 1.80 1.82 0.40 0.42
20 13.18 12.44 12.61 13.63 2.09 2.11 0.56 0.57
21 9.90 13.16 13.33 9.28 1.65 1.67 −0.03 −0.01
22 19.66 14.38 14.56 7.66 2.46 2.48 1.02 1.04
23 13.78 16.86 17.03 4.04 3.11 3.13 0.38 0.39
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Census Illustration

Estimating the MSE

• Strange behavior for 1997; problem occurs when σ̂2u is 0.

• Note that

V B-BOOT
i = g1i (σ̂

2
u) + {g1i (σ̂2u)− E∗[g1i (σ̂

∗2
u )]}+ O(m−1).

• g1i (σ̂
2
u) = Di σ̂

2
u(Di + σ̂2u)−1 = O(1).

• For 1997 dataset this term is 0.
• This causes many of the bootstrap estimates of the MSE of

the benchmarked estimators to be negative.

• Theoretical (asymptotic) MSE escapes problem since

P(σ̃2u ≤ 0) = O(m−r ) ∀ r > 0.
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Census Illustration

Simulation Study
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Summary

• Unified framework for one-stage benchmarking.

• The increase in MSE due to benchmarking is negligible.

• Derived two estimators of our MSE (asymptotically unbiased
and parametric bootstrap).

• Recommend use of estimator of the MSE of the benchmarked
EB estimator.

• Fast calculation.
• Parametric bootstrap yields undesirable results.
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Future Work

• Spatial and temporal smoothing for SAE and benchmarking.

• Application to high dimensional dataset (both in covariates
and parameter space) and more standard applications in SAE.

• Comparing to frequentists benchmarks under MSE
comparisons (under bootstrapping).

• Validations under CV and model-checking.
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Future Work

Questions: beka@cmu.edu

Thank you to Malay Ghosh: mentor, inspiration, and friend.

This research has been supported by the U.S. Census Bureau
Dissertation Fellowship Program and the NSF. The views
expressed reflect those of the authors and not of the United States
Census Bureau or NSF.
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Future Work
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Future Work

Notation

We benchmark a weighted mean or both a weighted mean and
variability.

• θ̂1, . . . , θ̂m = direct estimators of the m small area means
θ1, . . . , θm.

• Find the benchmarked Bayes estimator

θ̂
BM1

= (θ̂BM1
1 , . . . , θ̂BM1

m )

of θ such that
∑m

i=1 wi θ̂
BM1
i = t, where t is prespecified from

some other source or t =
∑m

i=1 wi θ̂i .

• The wi are known weights, where
∑m

i=1 wi = 1.
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Future Work

Notation

• Goal:

min
δ

m∑
i=1

φiE [(δi − θi )2|θ̂]

such that the δi ’s satisfy δ̄w =
∑m

i=1 wiδi = t.

• θ̂Bi = posterior mean of θi under a particular prior.

• ¯̂
θBw =

∑m
i=1 wi θ̂

B
i .

• r = (r1, . . . , rm)′ where ri = wi/φi , and define
s =

∑m
i=1 w

2
i /φi .
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Future Work

Theorem 1

Theorem 1

θ̂
BM1

= θ̂
B

+ s−1(t − ¯̂
θBw )r .

minimizes
∑m

i=1 φiE [(δi − θi )2|θ̂] subject to δ̄w = t.

(The theorem extends to a multivariate setting)
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Future Work

Theorem 2

• We can also benchmark using (i)
∑

i wi θ̂
BM2
i = t and (ii)∑

i wi (θ̂
BM2
i − t)2 = H, where H is defined below. Maybe we

think our estimates are too close together, for example.

• This can be extended to a multivariate setting.

Theorem 2

Subject to (i) and (ii), the benchmarked Bayes estimators of θi are
given by

θ̂BM2
i = θ̂Bi + (t − ¯̂

θBw ) + (aCB − 1)(θ̂Bi −
¯̂
θBw ),

where aCB = H/
∑m

i=1 wi (θ̂
B
i −

¯̂θBw )2. Note that aCB ≥ 1 when

H =
∑m

i=1 wiE [(θi − θ̄w )2|θ̂].
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Future Work

Preliminary Results

Consider the area-level effects model of Fay and Herriot (1979):

θ̂i |θi
ind∼ N(θi ,Di )

θi |β, σ2u
ind∼ N(x ′iβ, σ

2
u), i = 1, . . . ,m

Assume Di is known and σ2u and β are unknown.

• Estimate σ2u by moment estimator σ̃2u. Then σ̂2u = max{σ̃2u, 0}.
• We estimate β by β̃ = (X ′V−1X )−1X ′V−1θ̂, where
V = Diag{σ2u + D1, . . . , σ

2
u + Dm}.

• Benchmarked empirical Bayes estimator derived by Datta

et al. (2011) is θ̂EBM1 = θ̂EBi + (¯̂θw − ¯̂θEBw ).

• θ̂EBi = (1− B̂i )θ̂i + B̂ix
′
i β̃(σ̂2u), where B̂i = Di (σ̂

2
u + Di )

−1.
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Future Work

Preliminary Results

Define hVij = x ′i (X
′V−1X )−1x j . Under some mild regularity

conditions, we can find a second-order approximation of the MSE
of the benchmarked empirical Bayes estimator.

Theorem 4

E [(θ̂EBM1
i −θi )2] = g1i (σ

2
u) +g2i (σ

2
u) + g3i (σ

2
u) + g4(σ2u) +o(m−1),

where
g1i (σ

2
u) = Biσ

2
u, g2i (σ

2
u) = B2

i h
V
ii ,

g3i (σ
2
u) = B3

i Var(σ̃2u),

g4(σ2u) =
m∑
i=1

w2
i B

2
i Vi −

m∑
i=1

m∑
j=1

wiwjBiBjh
V
ij , and

Var(σ̃2u) = 2(m − p)−2
m∑

k=1

(σ2u + Dk)2 + o(m−1).
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Future Work

Parametric Bootstrap

We use the methods of Butar and Lahiri (2003) and use the
following bootstrap model:

θ̂∗i |u∗i
ind∼ N(x ′iβ + u∗i ,Di )

u∗i
ind∼ N(0, σ̂2u).

We use the parametric bootstrap twice. We first use it to estimate
g1i (σ

2
u), g2i (σ

2
u), and g4(σ2u). We then use it to estimate

E [(θ̂EBi − θ̂Bi )2] = g3i (σ
2
u) + o(m−1).
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Future Work

Parametric Bootstrap

Our proposed estimate of MSE [θ̂EBM1
i ] is

V B-BOOT
i = 2[g1i (σ̂

2
u) + g2i (σ̂

2
u) + g4(σ̂2u)]

− E∗
{
g1i (σ̂

∗2
u ) + g2i (σ̂

∗2
u ) + g4(σ̂∗2u )

}
+ E∗[(θ̂

EB∗
i − θ̂EBi )2].

• Our estimate σ̂∗2u is the estimate of σ2u that is calculated using
the θ̂∗i values.

• Note that θ̂EB∗i is calculated using σ̂∗2u and θ̂i (not θ̂∗i ).
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Future Work

Parametric Bootstrap

We extend the methodology of Butar and Lahiri (2003) to find a
parametric bootstrap estimator of the MSE of the benchmarked
EB estimator. Then we can show

Theorem 6

E [V B-BOOT
i ] = MSE [θ̂EBM1

i ] + o(m−1).
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