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A measure of income poverty

• Let yah denote log income (or consumption) for household h residing in
area a, and let sah denote the household size.

• Let ya and sa be vectors with elements yah and sah, respectively.

• The objective is to determine the level of welfare for small area a which
can be expressed as a function of ya and sa: W (ya, sa).

• The welfare function is typically non-linear.

• A popular example is the share of individuals whose income falls below
the poverty line:

W =
1

Na

∑
h

sah1(yah < Z), (1)

where Na denotes the number of individuals in area a.

3



Estimating poverty

• Suppose that household level (log) income can be described by:

yah = xTahβ + ua + εah (2)

• Suppose that we have data on xah for all households (from the popula-
tion census), but observe yah only for a small subset of the population
(from an income survey).

• Consider µ̂a as an estimator for W (ya, sa):

µ̂a =
1

R

R∑
r=1

W
(
ỹ(r)a , sa

)
, (3)

where ỹ(r)ah = xTahβ̃
(r)

+ ũ
(r)
a + ε̃

(r)
ah .
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ELL (2003) versus Molina and Rao (2010)

• Elbers, Lanjouw and Lanjouw (2003, Econometrica):

– More flexible: Permits non-normal errors

– Estimates the distributions for ua and εah non-parametrically

– But does not take full advantage of all available data (do not adopt
EB estimation)

•Molina and Rao (2010, Canadian Journal of Statistics):

– Does adopt EB estimation

– But is less flexible: Assumes normal errors
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The distribution matters when estimating poverty

• Getting the error distributions right is not merely a matter of efficiency.

• Getting the distributions wrong will introduce a bias.

•Whether the magnitude of this bias is meaningful in practice is an em-
pirical question.

• Choice between non-normal non-EB and normal-EB is motivated by:

– The degree of non-normality found in the data.

– How much information one stands to ignore by not adopting EB.

• The latter is largely determined by:

– The number of areas that are covered by the survey.

– The size of the area random effect.
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The objectives of this study

• The approach developed in this study aims to combine the best of both
worlds.

•We adopt EB estimation.

•Without restricting the distributions of the errors.
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Normal mixtures in a nested error model

• Let the probability distribution functions for ua and εah be denoted by Fu
and Gε.

• Consider normal-mixture distributions as a flexible representation of Fu
and Gε:

Fu =

i=mu∑
i=1

πiFi (4)

Gε =

j=mε∑
j=1

λjGj. (5)

•We assume that Fi and Gj are normal distribution functions with means
µi and νj, and variances σ2i and ω2

j.
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Estimation of normal-mixtures in a nested error model

• Let eah = yah − xTahβ, and ēa = ȳa − x̄Taβ.

•We have:

eah = ua + εah (6)

ēa = ua + ε̄a. (7)

• The challenge here lies in the nested error structure: We wish to es-
timate the distribution functions for ua and εah, but we observe neither
directly.

• For details on our method of estimation, please see the presentation by
Chris Elbers tomorrow.
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EB with normal mixture distributions

• It follows that p(ua|ēa) is a normal mixture with known parameters when-
ever p(ua) and p(εah) are normal mixtures.

• The conditional mean solves:

E[ua|ēa] =
∑
i

α(ēa) (γaiēa + (1− γai)µi) , (8)

where γai = σ2i/(σ2i + σ2ε/na), and where α(ēa) denote the mixing proba-
bilities of p(ua|ēa).

• Note that normal-EB is nested as a special case, where:

E[ua|ēa] = γaēa

var[ua|ēa] = (1− γa)σ2u,

with γa = σ2u/(σ2u + σ2ε/na).
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A small simulation experiment

•We simulate a census population with 500 areas, and 15 ∗ 200 = 3000

households in each area.

• The survey samples 15 households from each of the 500 areas.

• σ2e = 0.3, and σ2u/σ2e = 0.1, which yields: σ2u = 0.03 and σ2ε = 0.27.

• ua ∼ skew−t(0, scale = 1, skew = 3, df = 6), and εah ∼ skew−t(0, scale =

1, skew = 6, df = 24). (Both ua and εah are standerdized so that they
have mean 0 and variances 0.03 and 0.27, respectively.)

• There is one regressor, xah with µx = 0 and β = 1. We set R2 = 0.4, so
that σ2x = R2σ2e/(β2(1−R2)) = 0.2.

• Overall poverty is estimated at 32.6 percent.
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A small simulation: Estimating Fu
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A small simulation: Estimating Gε
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A small simulation: Bias and RMSE

• Non-EB:

– Bias: −1.61 (N) versus −0.20 (NM).

– RMSE: 9.27 (N) versus 9.13 (NM).

• EB:

– Bias: −0.94 (N) versus 0.30 (NM).

– RMSE: 5.66 (N) versus 5.38 (NM).

• Normal mixture does better than normal errors, but the improvement is
modest.
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An application to Brazil: Bias and RMSE

•We use 12.5% of the 2000 population census of Minas Gerais, Brazil,
which amounts to approx. 600, 000 households divided over 853 munici-
palities.

• An artificial survey is obtained by sampling 15 households from each of
the 853 municipalities.

• The regression model consists of 12 independent variables on demo-
graphics and education, which yields an adjusted-R2 of 0.423.

• The location effect is estimated at: σ̂2u/σ̂
2
e = 0.097.

• The overall poverty rate is estimated at 22.2 percent.
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An application to Brazil: Fu
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An application to Brazil: Gε
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An application to Brazil: non-EB estimates

0 200 400 600 800

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Index

po
ve

rt
y.

ag
g[

or
de

r(
po

ve
rt

y.
ag

g)
]

18



An application to Brazil: EB estimates I
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An application to Brazil: EB estimates II
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An application to Brazil: Bias and RMSE

• Non-EB:

– Bias: 1.37 (N) versus 0.10 (NM).

– RMSE: 10.06 (N) versus 9.84 (NM).

• EB:

– Bias: 2.17 (N) versus 0.78 (NM).

– RMSE: 7.00 (N) versus 6.62 (NM).
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