# Estimation of Normal Mixtures in a Nested Error Model With an Application to Small Area Estimation of Welfare 

Roy van der Weide (jointly with Chris Elbers)
DECPI - Poverty and Inequality Research Group
The World Bank
rvanderweide@worldbank.org

SAE Conference 2013, Bangkok, September 2

## Outline

- Small area estimation of poverty
- Non-Normal Non-EB versus Normal EB estimation
- This study: Non-Normal EB estimation
- Mixture-distributions for nested errors
- Implications for EB estimation
- Simulation experiment
- Empirical example: Minas Gerais, Brazil, in 2000
- Concluding remarks


## A measure of income poverty

- Let $y_{a h}$ denote log income (or consumption) for household $h$ residing in area $a$, and let $s_{a h}$ denote the household size.
- Let $y_{a}$ and $s_{a}$ be vectors with elements $y_{a h}$ and $s_{a h}$, respectively.
- The objective is to determine the level of welfare for small area $a$ which can be expressed as a function of $y_{a}$ and $s_{a}: W\left(y_{a}, s_{a}\right)$.
- The welfare function is typically non-linear.
- A popular example is the share of individuals whose income falls below the poverty line:

$$
\begin{equation*}
W=\frac{1}{N_{a}} \sum_{h} s_{a h} 1\left(y_{a h}<Z\right), \tag{1}
\end{equation*}
$$

where $N_{a}$ denotes the number of individuals in area $a$.

## Estimating poverty

- Suppose that household level (log) income can be described by:

$$
\begin{equation*}
y_{a h}=x_{a h}^{T} \beta+u_{a}+\varepsilon_{a h} \tag{2}
\end{equation*}
$$

- Suppose that we have data on $x_{a h}$ for all households (from the population census), but observe $y_{a h}$ only for a small subset of the population (from an income survey).
- Consider $\hat{\mu}_{a}$ as an estimator for $W\left(y_{a}, s_{a}\right)$ :

$$
\begin{equation*}
\hat{\mu}_{a}=\frac{1}{R} \sum_{r=1}^{R} W\left(\tilde{y}_{a}^{(r)}, s_{a}\right), \tag{3}
\end{equation*}
$$

where $\tilde{y}_{a h}^{(r)}=x_{a h}^{T} \tilde{\beta}^{(r)}+\tilde{u}_{a}^{(r)}+\tilde{\varepsilon}_{a h}^{(r)}$.

## ELL (2003) versus Molina and Rao (2010)

- Elbers, Lanjouw and Lanjouw (2003, Econometrica):
- More flexible: Permits non-normal errors
- Estimates the distributions for $u_{a}$ and $\varepsilon_{a h}$ non-parametrically
- But does not take full advantage of all available data (do not adopt EB estimation)
- Molina and Rao (2010, Canadian Journal of Statistics):
- Does adopt EB estimation
- But is less flexible: Assumes normal errors


## The distribution matters when estimating poverty

- Getting the error distributions right is not merely a matter of efficiency.
- Getting the distributions wrong will introduce a bias.
- Whether the magnitude of this bias is meaningful in practice is an empirical question.
- Choice between non-normal non-EB and normal-EB is motivated by:
- The degree of non-normality found in the data.
- How much information one stands to ignore by not adopting EB.
- The latter is largely determined by:
- The number of areas that are covered by the survey.
- The size of the area random effect.


## The objectives of this study

- The approach developed in this study aims to combine the best of both worlds.
- We adopt EB estimation.
- Without restricting the distributions of the errors.


## Normal mixtures in a nested error model

- Let the probability distribution functions for $u_{a}$ and $\varepsilon_{a h}$ be denoted by $F_{u}$ and $G_{\varepsilon}$.
- Consider normal-mixture distributions as a flexible representation of $F_{u}$ and $G_{\varepsilon}$ :

$$
\begin{align*}
F_{u} & =\sum_{i=1}^{i=m_{u}} \pi_{i} F_{i}  \tag{4}\\
G_{\varepsilon} & =\sum_{j=1}^{j=m_{\varepsilon}} \lambda_{j} G_{j} . \tag{5}
\end{align*}
$$

- We assume that $F_{i}$ and $G_{j}$ are normal distribution functions with means $\mu_{i}$ and $\nu_{j}$, and variances $\sigma_{i}^{2}$ and $\omega_{j}^{2}$.


## Estimation of normal-mixtures in a nested error model

- Let $e_{a h}=y_{a h}-x_{a h}^{T} \beta$, and $\bar{e}_{a}=\bar{y}_{a}-\bar{x}_{a}^{T} \beta$.
- We have:

$$
\begin{align*}
e_{a h} & =u_{a}+\varepsilon_{a h}  \tag{6}\\
\bar{e}_{a} & =u_{a}+\bar{\varepsilon}_{a} . \tag{7}
\end{align*}
$$

- The challenge here lies in the nested error structure: We wish to estimate the distribution functions for $u_{a}$ and $\varepsilon_{a h}$, but we observe neither directly.
- For details on our method of estimation, please see the presentation by Chris Elbers tomorrow.


## EB with normal mixture distributions

- It follows that $p\left(u_{a} \mid \bar{e}_{a}\right)$ is a normal mixture with known parameters whenever $p\left(u_{a}\right)$ and $p\left(\varepsilon_{a h}\right)$ are normal mixtures.
- The conditional mean solves:

$$
\begin{equation*}
E\left[u_{a} \mid \bar{e}_{a}\right]=\sum_{i} \alpha\left(\bar{e}_{a}\right)\left(\gamma_{a i} \bar{e}_{a}+\left(1-\gamma_{a i}\right) \mu_{i}\right) \tag{8}
\end{equation*}
$$

where $\gamma_{a i}=\sigma_{i}^{2} /\left(\sigma_{i}^{2}+\sigma_{\varepsilon}^{2} / n_{a}\right)$, and where $\alpha\left(\bar{e}_{a}\right)$ denote the mixing probabilities of $p\left(u_{a} \mid \bar{e}_{a}\right)$.

- Note that normal-EB is nested as a special case, where:

$$
\begin{aligned}
E\left[u_{a} \mid \bar{e}_{a}\right] & =\gamma_{a} \bar{e}_{a} \\
\operatorname{var}\left[u_{a} \mid \bar{e}_{a}\right] & =\left(1-\gamma_{a}\right) \sigma_{u}^{2}
\end{aligned}
$$

with $\gamma_{a}=\sigma_{u}^{2} /\left(\sigma_{u}^{2}+\sigma_{\varepsilon}^{2} / n_{a}\right)$.

## A small simulation experiment

- We simulate a census population with 500 areas, and $15 * 200=3000$ households in each area.
- The survey samples 15 households from each of the 500 areas.
- $\sigma_{e}^{2}=0.3$, and $\sigma_{u}^{2} / \sigma_{e}^{2}=0.1$, which yields: $\sigma_{u}^{2}=0.03$ and $\sigma_{\varepsilon}^{2}=0.27$.
- $u_{a} \sim$ skew $-t(0$, scale $=1$, skew $=3, d f=6)$, and $\varepsilon_{a h} \sim$ skew $-t(0$, scale $=$ 1, skew $=6, d f=24$ ). (Both $u_{a}$ and $\varepsilon_{a h}$ are standerdized so that they have mean 0 and variances 0.03 and 0.27 , respectively.)
- There is one regressor, $x_{a h}$ with $\mu_{x}=0$ and $\beta=1$. We set $R^{2}=0.4$, so that $\sigma_{x}^{2}=R^{2} \sigma_{e}^{2} /\left(\beta^{2}\left(1-R^{2}\right)\right)=0.2$.
- Overall poverty is estimated at 32.6 percent.


## A small simulation: Estimating $F_{u}$



## A small simulation: Estimating $G_{\varepsilon}$



## A small simulation: Bias and RMSE

- Non-EB:
- Bias: -1.61 (N) versus -0.20 (NM).
- RMSE: 9.27 (N) versus 9.13 (NM).
- EB:
- Bias: -0.94 (N) versus $0.30(\mathrm{NM})$.
- RMSE: 5.66 (N) versus 5.38 (NM).
- Normal mixture does better than normal errors, but the improvement is modest.


## An application to Brazil: Bias and RMSE

- We use $12.5 \%$ of the 2000 population census of Minas Gerais, Brazil, which amounts to approx. 600, 000 households divided over 853 municipalities.
- An artificial survey is obtained by sampling 15 households from each of the 853 municipalities.
- The regression model consists of 12 independent variables on demographics and education, which yields an adjusted- $R^{2}$ of 0.423.
- The location effect is estimated at: $\hat{\sigma}_{u}^{2} / \hat{\sigma}_{e}^{2}=0.097$.
- The overall poverty rate is estimated at 22.2 percent.

An application to Brazil: $F_{u}$


## An application to Brazil: $G_{\varepsilon}$



## An application to Brazil: non-EB estimates



## An application to Brazil: EB estimates I



## An application to Brazil: EB estimates II



## An application to Brazil: Bias and RMSE

- Non-EB:
- Bias: 1.37 (N) versus 0.10 (NM).
- RMSE: 10.06 (N) versus 9.84 (NM).
- EB:
- Bias: 2.17 (N) versus 0.78 (NM).
- RMSE: 7.00 (N) versus 6.62 (NM).

