Small area estimation of proportions of Arsenic affected wells in Bangladesh

By

Sanghamitra Pal

West Bengal State University, India

(Joint work with Prof. Partha Lahiri)

Sang	hamitra	a Pal

SAE 2013, Bangkok

Sept 2013 1

Agenda

- Problem Statement
- Proposed Solution
- ***** Simulation Results
- * Conclusion
- * References

Problem Statement

Arsenic – a Health Hazard

- Arsenic (As): toxic metal --- widespread in groundwater in many countries
- India(especially in Bengal), Bangladesh, Nepal, Thailand, China, Mongolia and Tibet, Viet Nam, Laos, Cambodia, Myanmar, various South American countries and areas in North America and Western Australia-----As affected

- Negative health impacts are related to:
 - its concentration in food or water

As Level Limits

 WHO guidelines for maximum level of As in drinking water: 10 μg/L for safe water

- * Different countries have adopted different standards for As
- * Bangladesh: 50 μg/L

Data Map

- In 1997 British Geological Survey had taken out a project "Survey on Arsenic affected wells in Bangladesh"
- * <u>A sample of 3540 wells were surveyed to</u> <u>measure Arsenic affected wells</u>
- Here we are going to estimate <u>District wise</u> proportion of wells less than the threshold value

Data: BGS Survey on As of Bangladesh

Sample_ID	Latitu de	Longit ude	Yr_ Const	Well type	Well Depth (m)	owner	divisio n	district	As (Ug/L)
S-98-00	22.87	90.78	1992	Shallo w	10.7		Chitta gong	Laksh mipur	13
S-98-01	23,02	90.87	1971	HP	7.2		Dhaka	Faridp ur	256

Map showing the distribution of As in Mandari

Sanghamitra Pal	SAE 2013, Bangkok	Sept 2013	8

Problem & proposed solution

- ***** District-wise proportion of arsenic affected wells
- Problem of Small area estimation
- Districts : small areas (Number of districts =61)
- Normal/Normal model
- Beta-Binomial Model
- * Benchmarking (Number of Divisions=7)

Problem

- * y_{ij}=arsenic level for well j in ith district ; t: threshold value I(y_{ij}≤t)=1, i=1,..m
 m=No of districts
- Population proportion

$$\tau_i = \frac{(\# \text{ wells in POPU.}) < t}{N_i}$$

- Sample proportion $p_i = \frac{\# wells \text{ in Sample} < t}{n_i}$
- $N_i = Population size for ith district$
- * And n_i = Sample size for ith district

Covariate:

 x_{i} =coverage (person per water source) in district i.

**

 X_i

The Fay-Herriot Model (FH Model)

Sampling Model : $p_i / \pi_i \sim N(\pi_i, D_i)$ Linking Model : $\pi_i \sim N(x_i \beta, A)$ Linear Mixed Model : $p_{i} = \pi_{i} + e_{i} = x_{i}'\beta + V_{i} + e_{i}$ Where $e_i \sim N(0, D_i)$ $V_i \sim N(0, A)$ Sampling variance : D_i (Known) Model variance : *A* (Unknown) (Fay - Herriot, 1979)

Small area estimation

Fay-Herriot (FH) Model (1979) An empirical Bayes estimator of π_i is given by

$$\begin{aligned} \hat{\pi}_i^{EB} &= (1 - \hat{B}_i) p_i + \hat{B}_i \hat{\mu}_i \\ \hat{B}_i &= \frac{D_i}{\hat{A} + D_i}, D_i = \frac{\overline{pq}}{n_i} \text{ (Morris, 1983), } \overline{p} = \frac{\sum_{i=1}^m N_i p_i}{\sum_{i=1}^m N_i} \\ \hat{\mu}_i &= x_i^T \hat{\beta}, \quad \hat{\beta}^T = (\beta_0, \beta_1) \\ \hat{\beta} &= (X^T \hat{V}^{-1} X)^{-1} X^T \hat{V}^{-1} p \\ p &= (p_1, \dots, p_m) \qquad V = diag(A + D_1, \dots, A + D_m) \\ \hat{A}, \hat{\beta}_0, \hat{\beta}_1 \text{ are obtained from REML} \end{aligned}$$

Sanghamitra Pal

SAE 2013, Bangkok

Sept 2013 12

Fay-Herriot Model (Contd...)

MSE estimation:

1. Datta-Lahiri (2000), Prasad-Rao (1990)

$$mse(\hat{\pi}_{i}^{EB}) = g_{1i}(\hat{A}) + g_{2i}(\hat{A}) + 2g_{3i}(\hat{A})$$

where $g_{1i}(A) = (1 - B_{i})D_{i}$
 $g_{2i}(A) = B_{i}^{2}Var(x_{i}^{T}\hat{\beta}) = B_{i}^{2}x_{i}^{T}(\sum_{1}^{m}\frac{1}{A + D_{j}}x_{j}x_{j}^{T})^{-1}x$
 $g_{3i}(A) = \frac{D_{i}^{2}}{(A + D_{i})^{3}} \cdot \frac{2}{\sum_{1}^{m}(A + D_{j})^{-2}}$

San	gham	nitra	Pal
	3		

SAE 2013, Bangkok

Arc-Sine Transformation

Apply above following FH model

& Back-Transformation to get CI for the Population proportion

$$y_i = \sqrt{n_i} Sin^{-1}(2p_i - 1)$$
$$\theta_i = \sqrt{n_i} Sin^{-1}(2\pi_i - 1)$$

Benchmarking

Benchmarking

•Seven divisions (large areas) in Bangladesh

•Use that data for benchmarking

SAE 2013, Bangkok

Benchmarking with Divisions

With FH Model
- Define
$$l_j = \overline{p}_j - 1.96se(\overline{p}_j)$$

 $u_j = \overline{p}_j + 1.96se(\overline{p}_j)$
 $\overline{p}_j = \sum_{k=1}^{di} W_{kj} p_k \quad j=1,2,...,7$
 $W_{kj} = \frac{N_k}{\sum_{i=1}^{d_i} N_i}, se(\overline{p}_j) = \sqrt{\sum_{k=1}^{di} W_{kj}^2} \frac{p_k q_k}{n_k}$
 $d_j = \text{No of district in division j}$

Benchmarked Confidence Intervals

$$\begin{aligned} \hat{\pi}_{i,lower} \frac{l_j}{\sum_{k=1}^{dj} W_{kj} \hat{\pi}_{k,lower}}, \hat{\pi}_{i,upper} \frac{u_j}{\sum_{k=1}^{dj} W_{kj} \hat{\pi}_{k,upper}} \\ \hat{\pi}_{i,lower} &= \hat{\pi}_i^{EB} - 1.96se(\hat{\pi}_i^{EB}) \\ \hat{\pi}_{i,upper} &= \hat{\pi}_i^{EB} + 1.96se(\hat{\pi}_i^{EB}) \end{aligned}$$

Sanghamitra PalSAE 2013, BangkokSept 201317	
---	--

Approximate Bayesian method :Beta-Binomial Model

Beta-Binomial:

$$u_{i} / \pi_{i} \sim Bin (n_{i}, \pi_{i})$$

$$\pi_{i} \sim Beta [\mu_{i}, \gamma \mu_{i} (1 - \mu_{i})]$$

$$\mu_{i} = \frac{\exp(b_{o} + b_{1}x_{i})}{1 + \exp(b_{o} + b_{1}x_{i})}$$
(Lohr - Rao, 2009)

Approximate Bayesian method

 $\pi_i / data \sim Beta(mean = (1 - \hat{B}_i) p_i + \hat{B}_i \mu_i = \hat{\pi}_i^{EB}$ var *iance* = V_i)

Sanghamitra Pal

SAE 2013, Bangkok

Approximate Bayesian (Contd.)

variance =
$$v_i = \hat{C}_i \hat{\pi}_i^{EB} (1 - \hat{\pi}_i^{EB}) - \frac{m-1}{m} \sum_{1}^{m} \{\hat{C}_i (-j) \hat{\pi}_i^{EB} (-j) [1 - \hat{\pi}_i^{EB} (-j)] - \hat{C}_i \hat{\pi}_i^{EB} (1 - \hat{\pi}_i^{EB}) \}$$

+ $\frac{m-1}{m} \sum_{1}^{m} [\hat{\pi}_i^{EB} (-j) - \hat{\pi}_i^{EB}]^2$
(Rao, 2003)

 $\hat{\pi}_{i}^{EB}(-j)$ are calculated with Bayesian Jackknife Formula (Delete-one)

Approximate Bayesian (Contd.)

Confidence Interval with Beta-Binomial

• Calculate shape parameters—find out CI

• Calculate Benchmarked Estimates proceeding as above

Simulation Results

We adopt <u>Design based approach</u> to see the performances of the estimators

Pseudo Population:

Generate 4n_i for the domain i to get a Population For simplicity we adopt SRSWR to draw sample for simplicity only

> Population $(N_i = 4n_i)$ \Downarrow SRSWR Sample (n_i)

Sanghamitra Pal

SAE 2013, Bangkok

Sept 2013 22

Simulation – Comparison Criterion

ACP - Actual Coverage Percentage (the closer to 95, the better)

AL - Average Length of CI (the Lesser the better)

ACP, ACV and AL : all are calculated from replicated samples (1000 samples)

(1) CI_Normal: CI where "MSE estimation is by Dutta-Lahiri (REML) method"

(2) CI_Normal_Bench: Benchmarking on CI_Normal

(3) Arc-Sine transformation

(4) Beta: with Beta-Binomial model

(5) Bench_Beta Benchmarking on Beta

Sang	hamitra	Pal

Results – Summary of ACP values

Summary	n _i	CI_Norm al	CI_Normal_ Bench	Arc_Sine	Beta	Beta_B ench
Min	15	47	59	45	37	76
1 st Qu.	43	88	92	67	76	88
Median	53	95	97	91	89	92
Mean	57	89	91	81	84	90
3 rd Qu.	76	100	98	96	94	95
Max	110	100	99	99	99	99

|--|

Results BOX Plots of ACP values under different methods

Sanghamitra Pal SAE 2013, Bangkok Sept 2013 25				
	Sanghamitra Pal	SAE 2013, Bangkok	Sept 2013 25	

Results

Red="CI_Normal"; Green=" CI_Normal _Bench"; Yellow="Arc-Sine";
Black="Beta"; Blue="Beta_Bench"

Sanghamitra Pal	SAE 2013, Bangkok	Sept 2013 26	

Summary of AL Values

Summar y	n _i	CI_Nor mal	CI_Normal _ Bench	Arc_Sine	Beta	Beta_Ben ch
Min	15	.1652	.1041	.0011	.0285	.0051
1 st Qu.	43	.1973	.2092	.1069	.1076	.0389
Median	53	.2341	.2665	.1855	.1831	.0626
Mean	57	.2359	.2367	.1696	.1751	.0907
3 rd Qu.	76	.2580	.2134	.2467	.2287	.1160
Max	110	.4091	.4458	.4611	.4339	.3768

5 7 5 7 1	Sanghamitra Pal	SAE 2013, Bangkok	Sept 2013	27
-----------	-----------------	-------------------	-----------	----

Results (Box-Plot of Average lengths of CI)

Sanghamitra Pal SAE 2013, Bangkok Sept 2013 28
--

Conclusion

•We can not use Direct estimators as the se is zero for some domains.

•We have adopted SAE problem as the domain sizes are small

•<u>Benchmarked Empirical Bayes estimators</u> perform better than others

•We proceed with <u>Beta-Binomial Model with</u> <u>Benchmarking</u>

References

- ✓ BGS and DPHE, 2001. Arsenic contamination of Groundwater in Bangladesh., *British*
- ✓ *Geological Survey and Department of Public Health Engineering, Govt. of Bangladesh. Final report;* Vol-2, 267p
- ✓ Datta, G. S. and Lahiri, P. (2000). A unified measure of uncertainty of estimated best linear
- ✓ unbiased predictors in small area estimation problems. *Statist. Sinica* **10** 613–627.
- ✓ Efron, B. and Morris, C. (1975). Data analysis using Stein's estimator and its generalizations.
- ✓ J. Amer. Statist. Assoc. 70 311–319.
- ✓ Fay, R. E., and Herriot, R. (1979). Estimates of income for small places: An application of James-Stein procedures to census data, J. Am. Statist. Ass., 74, 269-277.
- ✓ Ghosh, M. and Rao, J.N.K. 1994). Small area estimation: an appraisal.Statistical Sc. 81, 1058-1062
- ✓Kinniburgh, D.G and Kosmus, W. Arsenic contamination in groundwater: some analytical
- ✓ Considerations, Talanta 58 (2002) 165–180

References

✓Lohr, S. L. and Rao, J. N. K. (2009). Jackknife estimation of mean squared error of small area predictors in nonlinear mixed models. Biometrika 96 457–468.

✓ Michael Berg, Hong Con Tran, Thi Chuyen Nguyen, Hung Viet Pham, Roland Schertenlieb, Walter Giger, .Arsenic contamination of groundwater and drinking water in Viet Nam: a human health threat.,
 Environmental Science and

✓ *Technology*, vol. 35, no. 13, 2001, pp. 2621.6.

✓ Morris, C. (1983). Parametric empirical Bayes inference: Theory and applications (with discussion). *J. Amer.Statist. Assoc.*, 78, 47-65.

✓ Prasad, N. G. N., and Rao, J. N. K. (1990). The estimation of mean squared errors of small area estimators.

✓ Journal of the American Statistical Association 85, pp. 163-171.

✓ Rao, J. N. K. (2003). Small Area Estimation. John Wiley and Sons, Hoboken, New Jersey.

Sang	hamitra	Pal

Thank You

Email: mitra_pal@yahoo.com

Sang	hamitra	Pal