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➣ This work concerns small area estimation from
longitudinal surveys where data exhibit
spatio-temporal patterns.
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➣ This work concerns small area estimation from
longitudinal surveys where data exhibit
spatio-temporal patterns.

➣ Area-level mixed linear model is proposed to take
into account possible correlation among the
neighboring areas and time points.
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➣ This work concerns small area estimation from
longitudinal surveys where data exhibit
spatio-temporal patterns.

➣ Area-level mixed linear model is proposed to take
into account possible correlation among the
neighboring areas and time points.

➣ The covariance structures suitable for describing
spatio-temporal dependence are discussed.
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➣ This work concerns small area estimation from
longitudinal surveys where data exhibit
spatio-temporal patterns.

➣ Area-level mixed linear model is proposed to take
into account possible correlation among the
neighboring areas and time points.

➣ The covariance structures suitable for describing
spatio-temporal dependence are discussed.
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➣Sample surveys provide a cost effective way of
obtaining estimates for characteristics of interest at
both population and subpopulation levels (small areas)
which are not available in administrative registers.

➣In case of register-based statistics which comprise
administrative data from registers and administrative
systems, there is no problem to make regional
breakdowns of data.

➣In theory, register-based statistics can be broken
down to any level. The only limitation is that the
statistics should not disclose individuals.
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➣Regarding statistics based on data from sample
surveys, the problem is rather the opposite.

➣The risk of disclosure of individuals is practically
non-existent but the ability to break down the
statistics on small areas is much more difficult when
the samples get smaller as the larger number of
breakdowns is made.
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➣Regional statistics play an important role in the
governmental decision making when distributing funds
based on regional statistics concerning e.g. public
health, criminality, unemployment, etc. Hence, reliable
estimates are of utmost importance.

➣Small area estimation has received a lot of attention
due to its applications in official statistics.
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➣Longitudinal data are usually collected in order to
get information about changes over time. Due to a
long tradition of official statistics and register data in
the Nordic countries, longitudinal survey data is often
available.



Introduction

Outline

Background

Abstract

Introduction

SAE

Preliminaries

Multivariate Mixed

Linear Model

Generalization

c© 2013 Tatjana von Rosen, Department of Statistics, SU SAE 2013 – 5 / 16

➣Longitudinal data are usually collected in order to
get information about changes over time. Due to a
long tradition of official statistics and register data in
the Nordic countries, longitudinal survey data is often
available.

➣For example, victimization surveys have been
conducted in Estonia in 1993, 1995, 2000, 2004 and
2009. Many small areas had a low number of
respondents.
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➣Small area estimation is widely used for producing
estimates of population parameters for areas
(domains) with small, or even zero, sample sizes.
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➣Small area estimation is widely used for producing
estimates of population parameters for areas
(domains) with small, or even zero, sample sizes.

➣In the case of small domain sample sizes, estimation
that only relies on domain-specific observations may
lead to estimates with large variance.
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➣Small area estimation is widely used for producing
estimates of population parameters for areas
(domains) with small, or even zero, sample sizes.

➣In the case of small domain sample sizes, estimation
that only relies on domain-specific observations may
lead to estimates with large variance.

➣One possible solution is to employ estimation that
borrows information from related small areas through
statistical models using administrative data
(registers), in order to increase precision of the
estimates. Such estimation is often based on mixed
linear models providing a link to a related small area
through the use of supplementary data.
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➣In SAE it is often assumed that (population) units
in different small areas are uncorrelated.

➣However, in practice the boundaries that define a
small area are arbitrarily set and there appears to be
no good reason why population units that belong to
neighbouring small areas should not be correlated.
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➣In SAE it is often assumed that (population) units
in different small areas are uncorrelated.

➣However, in practice the boundaries that define a
small area are arbitrarily set and there appears to be
no good reason why population units that belong to
neighbouring small areas should not be correlated.

➣For example, with agricultural, environmental,
economic and epidemiological data, units that are
spatially close may be more related than units that are
further apart, although they may belong to different
small areas.

➣It is therefore often reasonable to assume the
correlation for the neighbouring areas.
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➣Mixed models have been frequently used in a
various small area applications, since they offer great
flexibility in combining information from various
sources, in handling intra- and interarea correlations.

➣When longitudinal and cross-sectional data are
available, MLM might be of use to take simultaneously
advantage of spatial similarities among small areas
and the temporal relationships of the data in order to
improve the efficiency of the small area estimators.
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Linear mixed models are extensively used in many
research areas due to the flexibility they offer for
modelling longitudinal and spatial data.
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All linear mixed models considered in this work can be
viewed as special cases of the following mixed linear
model

y = Xβ +Zu+ ε,

y is an n-vector of observable random variables,
β is a p-vector of fixed effects,
X : n× p and Z : n× k are known design matrices,
u :k × 1 is a vector of random effects,
ε : n× 1 is a vector of random errors.
We suppose that E(u) = 0, E(ε) = 0 and

V ar

(

u

ε

)

=

(

G 0
0 R

)

.

Hence, V = V ar(y) = ZGZT +R.
Assuming normality, y ∼ N(Xβ,V ).
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The Best Linear Unbiased Estimator (BLUE) of fixed
effects is given by

β̂ = (XTV −1X)−1XTV −1Y .

Best Linear Unbiased Predictor (BLUP) of random
effects is given by

û = GZTV −1(Y −Xβ̂).
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•Small area refers to a small geographical area or a
group for which little information is obtained from the
sample survey.

When only a few observations are available from a
given small area, the direct estimator based only on
the data from the small area is likely to be unreliable.

•The key question of small area estimation is how to
obtain reliable regional statistics when the sample
data contain too few observations to assure adequate
precision for statistical inference.
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•Nowadays, a common solution is to use statistical
models which make it possible to borrow strength for
the estimation by utilizing data from similar or
neighboring areas, or from similar surveys conducted
earlier, i.e. borrowing strength over space or/and time.

•Moreover, these models make use of the auxiliary
variables that might be available from administrative
records or censuses.
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Let θi be the parameter of interest (some function of
the small area mean and θ̂i be the direct estimator of
θi (survey-based estimate), i = 1, . . . ,m.

Assume that auxiliary data are available at area level,
i.e. we have area-specific data vectors
xi = (x1i, . . . , xpi) with known values for each area.
A design model (sampling model) can be expressed as
following:

θ̂i = θi + εi,

where the εi’s are independent sampling errors with
zero mean and known sampling variances σ2

i .
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The key assumption is that θi is related to the
area-specific auxiliary data through a linear model
(linking model):

θi = x′
iβ + ui,

where ui ∼ N(0, σ2

u), i = 1, . . . ,m. Combining the
linking model with the sampling model yields the
following mixed linear model:

θ̂i = x′
iβ + ui + εi,

where β : p× 1 defines the effects of the auxiliary
variables, xi : p× 1 is a vector of known constants, ui

is area-specific random effects, and εi is the sampling
error.
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The nested error regression model (individual level
model):

yij = x′
ijβ + ui + εij ,

where i = 1, . . . ,m, j = 1, . . . , ni, k is the number of
small areas, N =

∑m

i=1
ni, xij : p× 1 is the vector of

explanatory variables, β : p× 1 is an unknown vector
of regression coefficients, and ui’s and εij’s are
mutually independently distributed, ui ∼ N(0, σ2

u) and
εij ∼ N(0, σ2), respectively.

In matrix notation, this model can be expressed as

y = Xβ +Zu+ ε.
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•Fay-Herriot model (area level model):

yi = x′
iβ + ui + εi,

where i = 1, . . . ,m, m is the number of small areas,
xi : p× 1 is the vector of explanatory variables,
β : p× 1 is an unknown vector of regression
coefficients, ui’s and εi’s are mutually independently
distributed, ui ∼ N(0, σ2

u) and εi ∼ N(0, σ2

i ),
respectively.

In matrix notation,

y = Xβ + u+ ε,

and y ∼ N(Xβ,Σ), where Σ = σ2

uIm +D,
D = diag(σ2

1
, . . . , σ2

m).
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The focus of this work is on the multivariate version
of the extended Fay-Herriot model which includes
spatial-temporal dependence structure. This extended
model accommodates different patterns of spatial
correlations and changes over time in order to improve
estimation of the model parameters.
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Let θ̂it be the direct estimator of the parameter of
interest θit, i = 1, . . . ,m and t = 1, . . . , T , and the
sampling model is the following:

θ̂it = θit + εit,

where the vector εi = (εi1, . . . , εiT )
′ of sampling

errors for area i, εi ∼ N(0,Ψi), where the covariance
matrix Ψi is known. The linking model for the
parameter of interest θit is

θit = x′
itβ + ui + vit,

where ui is a random area effect and vit is an
interaction area-by-time effect.
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Suppose that for a given unit (city, region) m distinct
characteristics (small area means) are measured at
each of t different occasions.
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Suppose that for a given unit (city, region) m distinct
characteristics (small area means) are measured at
each of t different occasions.

We assume that we have N units such that the
measurements for different units are independent.
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Suppose that for a given unit (city, region) m distinct
characteristics (small area means) are measured at
each of t different occasions.

Let yijk denote the measurement of the ith
characteristic at occasion j on unit k, i = 1, . . . ,m,
j = 1, . . . , t, k = 1, . . . , N , and set
yjk = (y11k, . . . , ymjk)

′. Then we have the following
model for yjk:

yjk = θkXj + ujk,or

Y k = θkX
′ +U k,

where X ′ = (X1, . . . ,X t) is a known q × t matrix of
full rank, q ≤ t, and θk is an m× q matrix.
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Using the vec operator, yk = vec(Yk), we can rewrite
the model as following

yk = (X ⊗ Im)vec(θk) + uk,

where
uk=vec(U k) and vec(ABC)=(C ′

⊗A)vec(B).

Assuming that (vec(θ1), . . . , vec(θN )) = BA′, where
B : mq × r matrix of unknown parameters, and
A′ = (a1, . . . ,aN ) is an r ×N matrix of known
constants of full rank r < N .
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Let Y ′ = (y
1
, . . . ,yN) and U ′ = (u1, . . . ,uN), we

get the following multivariate mixed linear model:

Y ′ = (X ⊗ Im)BA′ +U ′.

We assume that the columns of U ′ are independently
distributed as N(0,Ω), where Ω is an unknown
mt×mt covariance matrix.
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Let Y ′ = (y
1
, . . . ,yN) and U ′ = (u1, . . . ,uN), we

get the following multivariate mixed linear model:

Y ′ = (X ⊗ Im)BA′ +U ′.

We assume that the columns of U ′ are independently
distributed as N(0,Ω), where Ω is an unknown
mt×mt covariance matrix.

If there are no special assumptions about the
structure of the covariance matrix Ω, then we have
the Growth Curve Model considered by Potthoff and
Roy (1964), but involving multiple responses.
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•In many practical cases the dimension mt may be
quite large relative to N .

•In this case a specific structure should be imposed on
Ω in order to obtain accurate estimates.

•In many cases a structured covariance matrix Ω may
be reasonable. Incorporating this covariance structure
in the analysis would generally lead to more efficient
inferences.
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A structure of Ω that may be appropriate to consider
in some situations is a compound symmetry pattern.
Under this structure, we have the following model

yjk = θkXj + λk + εjk,

where λk is the m× 1 vector of random effects
associated with the kth unit, λk∼N(0,Σλ),
independent of the random errors εjk, εjk∼N(0,Σe).
Observe that

Y k = θkX
′ + λk1

′ +Ek

or applying vec-operator

yk = (X ⊗ Im)vec(θk) + (1⊗ Im)λk + ek.

Here, Ω = cov(yk) = (11′ ⊗Σλ) + (It ⊗Σe).
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Now the full model may be expressed as

Y ′ = (X ⊗ Im)BA′ + (1⊗ Im)Λ
′ +E′,

where Λ
′ = (λ1, . . . ,λN ), E

′ = (e1, . . . ,eN ).
In vec-notation we have

y = (A⊗X ⊗ Im)β + u

with y = vec(Y ′), u = vec(U ′), β = vec(B). for
this model we have

cov(u) = (IN ⊗Ω) = (IN ⊗ 11
′
⊗Σλ) + (IN ⊗ I t ⊗Σe).
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For this model, the generalized least squares estimator
of β is the same as the least squares estimator. The
MLE of β is given by

β̂ = ((A′A)−1A′
⊗ (X ′X)−1X ′

⊗ Im)y,

cov(β̂) = (A′A)−1
⊗ (X ′X)−1

⊗Σe

+(A′A)−1
⊗ (v1v

′
1
)⊗Σλ,

where v1 = (10 . . . 0), and the MLE of B is given by

B̂ = ((X ′X)−1X ′
⊗ Im)Y

′A(A′A)−1,
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Partitioning B as (µ′ : Γ′)′, where µ : m× r and
Γ : m(q − 1)× r, we get

µ̂ =
1

t
(1′

⊗ Im)Y
′A(A′A)−1 = Ȳ ′A(A′A)−1,

Ȳ ′ = (ȳ.1, . . . , ȳ.N ), ȳ.k =
1

t

t
∑

j=1

yjk,

and

Γ̂ = ((Z ′Z)−1Z ′
⊗ Im)Y

′A(A′A)−1, X = (1 : Z).
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Unbiased estimators of the covariance matrices:

Σ̂e = Se/(N(t− 1)− r(q − 1)),

Σ̂λ =
1

t
(Sλ/(N − r)− Σ̂e),

where

Se =
N
∑

k=1

t
∑

j=1

(yjk − ȳ.k − (Z ′
j ⊗ Im)Γ̂ak)

×(yjk − ȳ.k − (Z ′
j ⊗ Im)Γ̂ak)

′

and

Sλ = t
N
∑

k=1

(ȳ.k − µ̂ak)(ȳ.k − µ̂ak)
′.
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Our model can be extended to a following general
random effects model

Y k = θkX
′ +ΛkX

′ +ΞkW
′ +Ek,

where W ′ is an s× t matrix of known constants of
full rank s, with q + s ≤ t, such that X ′W = 0, and
Λk : m× q and Ξk : m× s are matrices of random
effects; Λk, Ξk, and Ek are mutually independent.
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Our model can be extended to a following general
random effects model

Y k = θkX
′ +ΛkX

′ +ΞkW
′ +Ek,

where W ′ is an s× t matrix of known constants of
full rank s, with q + s ≤ t, such that X ′W = 0, and
Λk : m× q and Ξk : m× s are matrices of random
effects; Λk, Ξk, and Ek are mutually independent.

The unbiased estimates of the covariance matrices can
be obtained from the following estimating equations

(N(t− q − s))−1Se = Σ̂e,

(N − r)−1Sλ = (X ′X)−1
⊗ Σ̂e + Σ̂λ,

N−1SΞ = (W ′W )−1
⊗ Σ̂e + Σ̂λ
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