
A Document Comparison Approach using Hybrid Keyword and Structured Full
Text Vocabulary Searches

Kudachamai Boonsuk
Technopreneurship and Innovation Management

Program, Graduate School
Chulalongkorn University, Bangkok 10330, Thailand

Looktaomis2011@hotmail.co.th

Peraphon Sophatsathit
Advanced Virtual and Intelligent Computing (AVIC)

Center, Department of Mathematics, Faculty of Science
Chulalongkorn University, Bangkok 10330, Thailand

Peraphon.S@chula.ac.th

Abstract— This paper proposes a systematic full text
search on document using a combined keyword and
structural similarity of documents under consideration.
The approach operates in two steps. The first step uses a
set of designated keywords to acquire potential desired
documents by means of an open source tool. The second
step builds a suffix tree of frequently used vocabulary to
retrieve the most similar documents from the acquired
documents. In so doing, variations on contextual
matching of full text search can be mitigated, wherein
the resulting performance turns out to be quite
acceptable. The ultimate goal is to arrive at a platform
independent full text search technique that can be
realized. The benefits for this scheme are two folds. On
the one hand, relevant document can be retrieved as
close to the desired document as possible. On the other
hand, suspect plagiarism can be identified to some
extent, which is dependent on the effectiveness of the
proposed approach with plenty of rooms for future
improvement. The proposed work will eventually be put
to real use for database retrieval in a small business
enterprise.

Keywords- full text search; structural similarity; suffix
tre;, contextual matching; plagiarism.

I.

INTRODUCTION

All text-based documents written in prose are naturally
composed of sentences and paragraphs. Archiving these
documents is usually accompanied by keywords, whereby
subsequent reference or use can quickly retrieve the desired
document from the archive. This keyword mechanism is
well entrenched in information retrieval process from the
dawn of information storage and retrieval technology. The
rationale is simple: users can just provide the right
keywords in order to precisely retrieve the desired
document. Despite tremendous assistance by many
powerful search engines, this keyword search poses some
formidable and recalcitrant improvement challenges. The
advent of various full text search schemes introduces a
promising simplified document lookup process.
Nevertheless, the techniques still do not differentiate much
from its keyword-based forerunner in terms of retrieval
precision and speed. The sheer volume of text to be
matched so as to extract the closest, or exact in ideal case,

desired document makes it unlikely to carry out
successfully.

There are four major factors that must be resolved in full
text search. First and foremost, the original document is
usually created and stored in unstructured format. There is
no discernable way, aka record format, to systematically
locate it in the voluminous archive. Secondly, lengthy
sentences of unanticipated counts (though in practice are
limited) are in most cases not suitable for composing
necessary SQL conditions. Thirdly, most database
management systems are built to support keyword match.
The newly concocted full text search modules (as an
enhancement for latest release) are not compatible with
older releases and legacy applications, not to mention the
high cost of upgrade. Finally, the forefront DBMS full text
implementations are proprietary, employing different
approach and platform specific. Users and developers alike
must tailor their applications to comply with the individual
platform, hence less portability and more customization.

Bearing the aforementioned problems and issues, the
proposed research introduces a concise novel algorithmic
approach to be implemented on an open source tool and
well known suffix tree structure that allow users and
developers to utilize the full text search module in a
straightforward fashion. The proposed approach will be
elucidated as follows. Section 2 recounts some directly
impact related works through which the proposed approach
is derived. Section 3 describes the novel two-step proposed
approach. Section 4 demonstrates the viability of the
proposed approach via a series of experiments. Some
benefits and shortfalls are discussed in Section 5. Section 6
expresses a few final thoughts and future enhancement.

II. RELATED WORK

Varelas [1] used hypernym and hyponym to investigate
word search based on semantic similarity, focusing only on
noun and verb as the search basis. Xie [6] explained the
quality dimensions of Internet search engines. Goldman
[11] employed proximity search to retrieve information and
ranked the outcome by score. This technique is exploited in
this research to compute word proximity, wherein search
efficiency can be objectively measured. Salton [2] proposed
term weighting technique to retrieve the desired text, while
Hofmann [12] employed PLSA technique to compute term
weight. McCandless [5] explained the use of Lucene, an

978-1-61284-840-2/11/$26.00 ©2011 IEEE

252

open source tool being applied to keyword search in this
work. Chartbunchachai [8] suggested weighted positional
measure of characters and words in string similarity
matching scheme which was also adopted in this work. The
main referential work has been taken from Pukkasenungi
[10] where text matching is categorized and evaluated. The
five categories being applied are illustrated in Figure 1. The
same discriminating criteria are strictly followed, i.e., exact
match if cosine of similarity is equal to 1.0, plugin � 0.8,
subsume � 0.5, partial � 0.3, and fail � 0.1. Should the
cosine fall between 0.1 < cos� < 0.3, matching process
would be re-evaluated accordingly.

Figure 1. matching categories.

Performance measure can be carried out in many ways.
Makhoul [4] suggested their approach for information
retrieval. Balinski and Danilowicz [14] suggested re-
ranking of inter-document distance method according to the
ideal document. We resort to simple scoring (weight-
distance [7]) technique and measure the precision/recall/F-
measure to gauge the performance of the first step selection
or hereafter referred to as rough pick. Meanwhile, word
proximity forms a suffix tree [9] at which the root word is
determined according to the matching category or fine pick.

III. PROPOSED APPROACH
The proposed approach is divided into two steps, namely,

a keyword search front-end and an algorithmic procedure to
gather relevant document and handle full text search,
respectively. The front-end step is carried out by means of
an open source tool called Apache Lucene, hereafter
referred to as Lucene for brevity. The second step builds a
suffix tree to analyze full text similarity based on pre-
established criteria.

A. Front-end keyword selection process
The procedure begins in the same manner as traditional

word search. A set of single term words are collected from
WordNet [3] as a preliminary matching process. The words,
their referential document, and associated dimension or
weight form a vector space model for the search process.
Word lookup is carried out by comparing term frequency–
inverse document frequency (tf-idf) weighting value of the
target vector holding the desired word with the source vector
being retrieved from the vector space. A matching indicator
based on similarity cosine is computed to determine if a
document is the closest one using document relevant (dr) and
document frequency (df) having high discriminating power.

The documents obtained by keyword search may not
represent all the desired information. Typically, they can be
classified into four groups as follows:

1. retrieved and relevant
2. not retrieved but relevant
3. retrieved but irrelevant
4. not retrieved and irrelevant

Based on the above classification, it is impractical to
retrieve any 100% compatible documents as desire. We will
thus employ three statistical classification indicators for the
proposed approach performance measurement, namely,
precision, recall, and F-measure which are defined below.

Precision = |{relevant doc} � {retrieved doc}|

A=R R A A R

 RA RA

Exact SubsumePlugin

Partial Fail

 |{retrieved doc}|
Recall = |{relevant documents} � {retrieved documents}|

|{relevant documents}|
F-measure = 2 * precision * recall
 (precision + recall)

B. Similarity analysis process
Matching of full text or long character string has been a

challenging recalcitrant text search research. Two obvious
non-candidate of matching categories are exact and fail
matches as they are impractical to undertake. Our
compelling question is how to adapt some of the prior works
to determine if either plugin, subsume, or partial matching of
the search string is an acceptable outcome. A preliminary
investigation was conducted based on weighted positional
character matching proposed by Chartbunchachai [8] to
establish a tentative minimal threshold length for further in-
depth investigation. Our approach thus begins with the
original document by tallying a list of most frequently used
words and create a corresponding suffix tree rooted on the
highest frequency word. All succeeding words are sorted,
whereby the first N words (decided by the users themselves)
will form a list of candidate words for subsequent suffix tree
construction. The distance of each word from the root word
delineates the length of the suffix tree branch. The position
of each root word in the original document denotes the
height level of the tree. This process is repeated for every
target document so that the output suffix trees can be
compared for their similarity. The by-product of this work is
plagiarism detection [13] which is subject to further
improvement. Details on implementation will be furnished
in the next section.

C. Document comparison algorithms
The proposed approach was designed to operate in a

somewhat different environment setting from conventional
DBMS and existing search engines. In most DBMS,
searching must be prepared and carried out by the user with
the help of standard SQL commands. Search engines, on
the contrary, are ready-to-use application software operating
through various client browser platforms. The distinction
between these two entities is the level of application
abstraction. The former relies on the computation power of
limited standard SQL vocabulary, while the latter is a

253

proprietary product by which users must follow available
options and operating procedures. We recognize these
shortcomings and resort to an open source tool that lies one
layer above DBMS, yet still below those handy search
engines. This is referred to as the application layer. The
advantages so envisioned are three folds. First, users can
operate independently of the supporting DBMS. Second,
customization of user’s application can be done by the user
themselves. And last, it’s an open source tool that frees the
user from any legal infringements.

Bearing the above prospect in mind, the full text search
framework is established in the application layer as follows:

1. set up an index creation preliminary based on user’s
search requirements, i.e., looking for the desired document
according to some predetermined keywords, or looking for
similar target documents to the original document.

2. create a list of working indices using Lucene library
and API [1] to transform source data into Lucene index and
document frequency (df) to facilitate subsequent keyword
search. All word prefixes and suffixes are handled by
Lucene facilities.

3. search and collect the most relevant documents
according to the above indices. This collection of
documents will be referred to as a document pool. This is
the first step or rough pick.

4. in case of finding similar target documents, build a
suffix tree based on the original document. The algorithm
proceeds as follows:

4.1 create and sort in descending order a list of most
frequently occurring words in the original document. The
maximum number of words in this list is set to 25 in this
study.

4.2 build a suffix tree starting with the first occurrence of
the most frequently occurring word as root.

4.3 scan all words that appear to the left of the first
occurrence of the root word. If the word is in the sorted list,
attach it to the tree and record its position in the document.

4.4 proceed to the next occurrence of the root word and
repeat the above scan-attach word to the suffix tree.

4.5 should there be any words in the list left after the last
occurrence of the root word, that is, all words in the sorted
list that appear to the right of the last root word, attach them
to the tree and record their corresponding position.

4.6 for each target document, compute the statistical
classification indicators to select the candidate target
document out of the document pool. Repeat until all
documents in the pool are examined.

4.7 for each document in the candidate pool, build a
corresponding suffix tree in the same manner as the original
document.

4.8 compare the similarity of the suffix tree obtained
from the original document with that of each target
document using vector comparison. Apply the above five
matching categories to determine the degree of similarity.

5. in case of finding the desired document using
predetermined keywords. The algorithm proceeds as

follows:
5.1 build a suffix tree based on term weight assigned by

the user. The highest term weight will take the root position
in the same fashion as the most frequently occurring word
from the original document.

5.2 proceed in the same manner as those of step 4.6-4.8.

IV. APPLICATION EXPERIMENTS
To validate the viability of the proposed approach, an

actual implementation was conducted via a full-fledged
development process. Our challenging mission is to stay
focus on full text domain of application to suit the contextual
requirements. By virtue of Lucene library support, design
activities were minimal once system analysis was completed.
The application was written in Java and installed for a pilot
run. In the meantime, cross-application APIs were
developed to partly fulfill the application layer functionality.

One issue that precipitates from such a framework is
design of software API for tool integration using Lucene
libraries. The experimental runs were executed following
the processing sequence as depicted in Figure 2. Three sets
of different document sizes were employed to test the
proposed algorithms. They are:

1. small sized document having less than 100 words
2. medium sized document having between 500-1000

words
3. large sized document having more than 1000 words

assign weight

tally word
frequency

input
keyword

original
document build suffix tree

collect
document pool

compute statistics
and

select candidate
target documents

compare original
VS target

suffix trees

desired document
statistics

tally word
frequency

input
document

Figure 2 riment processing sequence . expe

The original document underwent Lucene classification
process to create the document frequency (df) for subsequent
keyword search. Table 1 shows a sample document
frequency list obtained from the original document.

254

TABLE I. SMALL SIZED DOCUMENT FREQUENCY

Terms Frequency of occurrence
basic 1
linguistic 1
assumption 1
proximity 3
searching 1
words 7
document 2
implies 1
relationship 2
between 2
given 1
authors 1
documents 1
try 1
formulate 1
sentences 2
which 1
contain 1
single 1
idea 1
cluster 1
related 2
ideas 1
within 3
neighboring 1
organized 1
paragraphs 1

From the above list, the word "words" was selected as the

root word for subsequent suffix tree construction. Its closest
relatives are "proximity" and "within" which were used as the
word list of the original document. Other words were not
used as they would add unnecessary dispersion to the span of
the resulting suffix tree. Table 2 shows the statistics of word
list position distribution from the root of the suffix tree.

The first set, or small size document, yielded the
following statistics shown in Table 3, 4, and 5 which depict
word list position distribution, statistical classification
indicators, and similarity comparison, respectively.

TABLE II. WORD LIST AND POSITION DISTRIBUTION OF
ORIGINAL DOCUMENT

Root \ Term proximity within
1 3, 1 -
2 8, 6 -
3 34, 32 12, 3
4 42, 40 20, 11
5 49, 47 27, 18
6 59, 57 37, 28
7 73, 71, 10 51, 42, 13

TABLE III. WORD LIST AND POSITION DISTRIBUTION OF
TARGET DOCUMENT

Root \ Term proximity within
1 3, 1 -
2 8, 6 -
3 34, 32 12, 3
4 42, 40 20, 11
5 49, 47 27, 18
6 59, 57 37, 28
7 71, 69, 8 49, 40, 11

TABLE IV. STATISTICAL CLASSIFICATION MEASURES OF
TARGET DOCUMENT

doc 1 2 3 4 5 6 7 8 9 10
Qt F F F F F F F F F F
df 8 10 5 4 1 20 3 7 4 20
Pre 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Rec .75 1.0 1.0 1.0 1.0 1.0 1.0 .71 1.0 .60
F-m .85 1.0 1.0 1.0 1.0 1.0 1.0 .83 1.0 .75

 Qt=query tool, F=full text

TABLE V. SIMILARITY COMPARISON OF TARGET
DOCUMENT

 Original doc
weight
vector

Target doc
weight
vector

similarity

proximity 15 14 93.33%
within 11 9 88.81%

average 13 11.5 91.07%

We further concocted some candidate documents by

arbitrarily substituting or deleting approximately 20 words to
mimic plagiarism attempts. The corresponding results to
those of Table 3, 4, and 5 were shown in Table 6, 7, and 8,
respectively. A comparative plot is depicted in Figure 3.

TABLE VI. WORD LIST AND POSITION DISTRIBUTION OF
MODIFIED DOCUMENT

Root \ Term proximity within
1 2, 1 -
2 6, 5 -
3 32, 31 12, 3
4 40, 39 20, 11
5 47, 46 27, 18
6 56, 55 36, 27
7 69, 68, 9 49, 40, 12

255

TABLE VII. STATISTICAL CLASSIFICATION MEASURES OF
MODIFIED DOCUMENT

doc 1 2 3 4 5 6 7 8 9 10
Qt T T T T T T T T T T
df 50 3

0
4
0

2
0

5
0

7
0

6
0

40 2
0

25

Pre 1.0 1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.0 1.
0

1.0

Rec .90 1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

.92 1.
0

.68

F-m .94 1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

.96 1.
0

.80

 Qt=query tool, T=term

TABLE VIII. SIMILARITY COMPARISON OF MODIFIED
DOCUMENT

 Original doc
weight
vector

Target doc
weight
vector

similarity

proximity 15 5 33.33%
within 11 8 72.72%

average 13 6.5 53.03%

0

10

20

30

40

50

60

1 2 3 4 5 6 7

Main

doc1

doc2

Fi parativ , gure 3. com e plot of Main(original), doc1(target)

and doc2(modified) small sized documents

It is apparent that the original and target documents are
closely resemble, whilst the modified document still exhibits
similar characteristic to the original counterpart. This
reaffirms the similarity measure precipitated from the
proposed approach. Similar results were also obtained from
medium and large size documents, where 50 and 100 words
were altered as depicted in Figure 4 and 5, respectively.

0

20

40

60

80

100

120

140

160

180

200

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

main
doc1
doc2

Fi parativ , gure 4. com e plot of Main(original), doc1(target)

and doc2(modified) medium sized documents

0

50

100

150

200

250

300

350

400

450

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

main

doc1

doc2

Fi parativ , gure 5. com e plot of Main(original), doc1(target)

and doc2(modified) large sized documents

V. DISCUSSION
From the experimental results, the proposed approach

yields the similarity characteristic that renders detection to be
straightforwardly determined. Despite subsume matching is
prevalent as shown in Table 9, the ease of application makes
the proposed approach suitable for typical casual usage in
many regards. However, the fact that the shape of the suffix
tree depends largely on the frequency of occurrences of the
root word renders a wider span but dense suffix tree. In
particular, if most words in the list have high df value, the
similarity measure will decrease considerably.

One major caveat of the proposed approach is root word
selection. In the small sized document case, a few root
words in the concocted document were haphazardly (due to
randomness) replaced by newly introduced words. Not only
the frequency of occurrences was reduced, but also the
position distribution was affected. The resulting suffix tree
and similarity comparison were thus degraded as depicted in
modified small document percentage. On the brighter side
of this predicament, if the new words fall out of the root
word positions, the shape of the suffix tree remains relatively
unaffected, and hence yields the same similarity comparison.

Further comparison with commercial software was not
performed due to copyrights and the cost incurred from the
proprietor.

256

TABLE IX. DOCUMENT SIMILARITY COMPARISON AVERAGE

Small Medium large
orig mod orig mod orig mod

52.38 28.58 61.56 58.57 60.81 55.02

VI. CONCLUSION AND FUTURE WORK
The myriad of documents so generated in today's world,

which are further spreaded by the Internet, have dwarfed the
effort to locate and retrieve the desired document in an
efficient manner. As they are available in more and more
format varieties, the predominantly preferred and
inexpensive format remains to be text document. In this
work, we merely demonstrate a novel two-step full text
search approach using structural configuration of the
keywords as the principal basis. This serves as a rough pick
to ease the recalcitrant full text search problem. The
proposed full text search can not only retrieve relevant
document effectively by means of a systematic similarity
comparison method, but also turns the application around to
operate as a plagiarism detection vehicle. We envision that
this straightforward implementation will instill further
improvement on more efficient and elaborated algorithmic
procedures, whereby the notion of full text search can be
extended to other forms of document for better and accurate
information retrieval.

REFERENCES
[1] G. Varelas, E. Voutsakis, P. Raftopoulou, E. Petrakis, and E. Milios,

“Semantic similarity methods in wordNet and their application to
information retrieval on the web”, Proceedings of the 7th Annual
ACM International Workshop on Web Information and Data
Management (WIDM’05), Bermen, Germany, November 5, 2005, pp.
8-54.

[2] Gerard Salton, C.B., “Term-weighting approaches in automatic text
retrieval”, Information Processing & Management, 1988, vol. 24,
issue 5, pp. 513-523.

[3] http://wordnet.princeton.edu/, last accessed on November 23, 2010.

[4] John Makhoul, Francis Kubala, Richard Schwartz, and Ralph
Weischedel, “Performance measures for information extraction”,
Proceedings of DARPA Broadcast News Workshop, Herndon, VA,
February 1999, pp. 1-4.

[5] Michael McCandless E.H. and Otis Gospodneti�, Lucene in Action,
Second Edition, Manning Publications Co, 2004.

[6] M. Xie, H. Wang, and T.N. Goh , “Quality dimensions of Internet
search engines”, Journal of Information Science 24 (5), 1980, pp.
365–372.

[7] Nalinee Sophatsathit and Peraphon Sophatsathit, “Filtering Search
Document using Weight-Distance Transformation”, Proceeding of the
13th National Computer Science and Engineering Conference
(NCSEC2009), Montien Riverside Hotel, Bangkok, November 5-6,
2009, pp. 389-393.

[8] Nawaphorn Chartbunchachai, Autcha Mutchalintungkul, and
Peraphon Sophatsathit, “ANSL Algorithm for String Similarity
Matching”, Proceedings of the 2nd International Conference on
Knowledge and Smart Technologies (KST2010), Burapha University,
Chonburi, Thailand, July 24-25, 2010, pp. 54-57.

[9] Oren Zamir and Oren Etzioni, “Web Document Clustering: A
Feasibility Demonstration”, Proceedings of the 21st annual
international ACM SIGIR Conference on Research and Development
in Iinformation Retrieval, Melbourne, Australia, August 1998, pp. 46-
54.

[10] Pensri Pukkasenung, Peraphon Sophatsathit, and Chidchanok
Lursinsap, “An Efficient Semantic Web Service Discovery Using
Hybrid Matching”, Proceedings of the 2nd International Conference
on Knowledge and Smart Technologies (KST2010), Burapha
University, Chonburi, Thailand, July 24-25, 2010, pp. 49-53.

[11] Roy Goldman, N.S., Suresh Venkatasubramanian, and Hector Garcia-
Molina, Proximity Search in Database, 1998.

[12] T. Hofmann, “Probabilistic Latent Semantic Analysis”, Proceedings
of the 22nd Annual ACM Conference on Research and Development
in Information Retrieval, Berkeley, California, ACM Press, August
1999, pp. 50-57.

[13] Zhan Su, Byung-Ryul Ahn, Ki-Yol Eom, Min-Koo Kang, Jin-Pyung
Kim, and Moon-Kyun Kim, “Plagiarism Detection Using the
Levenshtein Distance and Smith-Waterman Algorithm”, Proceedings
of the 3rd International Conference on Innovative Computing
Information and Control (ICICIC '08), 2008, pp. 569-569.

[14] Jaroslaw Balinski and Czeslaw Danilowicz, “Re-rangking method
based on inter-document distances”, Information Processing and
Management, Volume 41, Issue 4, July 2005, pp. 759-775.

257

