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Abstract— The aim of this study is to improve software effort 
estimation by incorporating straightforward mathematical 
principles and artificial neural network technique. Our process 
consists of three major steps. The first step concerns data 
preparation from each considered database. The second step is 
to reduce the number of given features by considering only 
those relevant ones. The final step is to transform the problem 
of estimating software effort to the problems of classification 
and functional approximation by using a feedforward neural 
network. Experimental data are taken from well-known public 
domains. The results are systematically compared with related 
prior works using only a few features so obtained, yet 
demonstrate that the proposed model yields satisfactory 
estimation accuracy based on MMRE and PRED measures. 

Keywords- Software Effort Estimation; Artificial Neural 
Networks; Functional Approximation; MMRE; PRED 

I.  INTRODUCTION  
Software effort estimation is the process in planning 

stage of software development life cycle for predicting the 
software effort to estimate software costs required [1]. An 
estimation precision of software project cost is important for 
software project management. A numbers of techniques have 
been introduced in software development effort estimation 
such as regression analysis, statistical model, genetic 
algorithm, fuzzy, fuzzy-neuro systems, and artificial neural 
networks. An artificial neural network is a computational 
approach to model complex relationships between 
independent and dependent features. However, the problems 
still significantly challenge researchers and experts to 
improve estimation accuracy. One predominant difficulty 
that estimation models must reckon with is the number of 
cost drivers involved in the effort prediction process. 
Consequently, the objectives of this research are to enhance 
software effort estimation accuracy and to reduce the number 
of features. The proposed model compares its estimation 
with the actual value and employs MMRE and PRED 
measures to gauge the estimation accuracy, all of which are 
based on smaller number of candidate features than what 
originally have available.  

The organization of this paper is as follows. Section 2 
discusses literature review on software effort estimation 
models. Section 3 describes details of the proposed model 
encompassing data source and methodology. Section 4 

explains some note worthy implications of the experiments. 
The conclusion and future work are discussed in the last 
section. 

II. RELATED WORK 
The early techniques for software effort estimation were 

typically based on statistics and regression analysis. Boehm’s 
COnstructive COst MOdel (COCOMO) [2] and Putnam’s 
Software LIfecycle Management (SLIM) [3] are early well-
known software effort estimation models. In the mean time, 
many new approaches have been proposed. In analogy-based 
estimation, Li, et al [4] introduced the methodology for 
selection of proper projects using genetic algorithm to 
improve the performance of analogy-based effort prediction. 
Chiu and Huang [5] considered improving analogy-based 
effort estimation with the help of genetic algorithm for 
adjusting reuse effort by measuring similarity distances 
between pairs of projects using Euclidean, Manhattan, and 
Minkowski methods. Huang, et al [6] investigated the 
potential means to improve the accuracy of effort estimation, 
where grey relational analysis and genetic algorithm were 
used to handle similarity measures of complex relations and 
found appropriate weight in each effort driver, respectively. 
Lefley and Shepperd [7] indicated that genetic programming 
yielded good accuracy of software effort estimations based 
on a management consultancy organization. Kumar, et al [8] 
applied wavelet neural network (WNN) for software effort 
prediction with the help of Morlet and Gaussian transfer 
functions. In addition, they proposed a threshold acceptance 
training algorithm for wavelet neural network (TAWNN). 
Tadayon [9] investigated the use of expert judgment, 
artificial neural networks, and COCOMO II model for 
software effort prediction. Rao, et al [10] proposed 
Functional Link Artificial Neural Network (FLANN) to 
reduce the computational complexity suitable for on-line 
applications. Pedrycz, et al [11] introduced a granular model 
of software effort estimation designed based on 
experimentally developed information granules. It was 
concerned with the development of software effort 
estimation models using fuzzy sets. Huang and Chiu [12] 
proposed a fuzzy neural network for software effort 
estimations by applying artificial neural network to fuzzy 
inference processes. Recently, researchers try to take other 



technique mix into the original models to improve effort 
prediction accuracy. 

Another important aspect of effort estimation is feature 
subset selection method. Chen, et al [13] suggested effort 
improvement estimation using WRAPPER technique to 
select the feature subset. Koch and Mitlohner [14] employed 
the concept of social choice for software project effort 
estimation, substituting the voters by software project 
attributes. Huang and Chiu [15] investigated the effect on 
estimation accuracy by adopting genetic algorithm for use in 
analogy-based software effort estimation models to 
determine the appropriate weighted similarity measures of 
effort drivers. The approach used three weighted analogy 
methods, namely, the unequally weighted, the linearly 
weighted, and the nonlinearly weighted. The linearly 
weighted deals with a linear equation for each effort driver as 
the weight of distance measure; the unequally weighted 
assigns a constant weight to distance measure for each effort 
driver; and the nonlinearly weighted uses a separate 
nonlinear equation as a weight of distance measure for each 
effort driver. Shepperd and Schofield [16] employed 
analogies to estimate software effort data through the case-
base reasoning technique and other prediction approaches. In 
short, researchers have expended numerous endeavors on 
effort estimation at the expense of full fledged software 
project attributes. As such, we propose a technique that 
attempts to reduce the costly estimation process by utilizing 
only pertinent software project features, attributes, or cost 
drivers (depending on the underlying metrics, e.g., FP, 
KSLOC, KDSI, etc.), but hereafter will be referred to as 
features. 

III. PROPOSED METHODOLOGY 
Our process consists of three major steps. The first step 

concerns data preparation from each considered database. 
The second step is to reduce the number of given features by 
considering only those relevant ones. The final step is to 
transform the problem of estimating software effort to the 
problems of classification and functional approximation by 
using a feedforward neural network. Detail of each step is 
described in the sections that follow. 

A. Data Preparation and Database Selection  
All standard data sets are chosen from available software 

engineering public domain as follows. First and foremost, 
COCOMO81 data set [2] was selected, consisting of 63 
software projects in various programming languages, such 
as FORTAN, Pascal, and C. The nature of the projects 
includes Business, Process control, Human-Machine 
Interaction, Scientific, Support, and System. To construct 
the model, the original 16 independent features and one 
dependent feature from the data set to accommodate 
COCOMO81 Equation are adopted and computed as shown 
in (1). 
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where Effort is the estimated effort measured in person-
months; a and b are specific parameters representing three 
software development modes, namely, Organic, Semi-
detached, and Embedded; KSLOC is the thousands of lines 
of code in the program excluding blank and comment lines 
(some literatures use KDSI whose meaning is slightly 
different, but is considered interchangeable with KSLOC in 
the context of this work as the focus is on more important 
issues). The value of KSLOC is estimated directly or 
derived from function point analysis (FPA); and EM is the 
effort multiplier measured from project’s environmental 
factors, usually referred to effort drivers. 

There are 60 projects from 1980 to 1990 in NASA60 
data set [17] and 93 projects from 1971 to 1987 in NASA93 
[18]. Both data sets are in COCOMO81 format collected 
from different NASA centers published in PRedictOr 
Models In Software Engineering (PROMISE).  

Albrecht data set [19], [20] consists of 24 software 
projects from IBM Data Processing Services (IBMDPS) 
organization developed in third generation languages. Of the 
24 projects, 18 were written in COBOL, 4 in PL1, and 2 in 
DMS language. We employed 6 features in the model, 
encompassing 5 independent features which include number 
of inputs, number of outputs, number of inquiries, number 
of master files, and adjustment factor, and one dependent 
feature which is the actual effort measured in work-hours. 
Meanwhile, we exclude source lines of code that appears in 
this data set since it is not a parameter for calculating 
function point using Albrecht model.  

CF data set [21] has 21 historical projects derived from 
Canadian Financial organization, using the FPA rules of the 
International Function Point Users Group (IFPUG) 
standards. We adopted 7 features which include 6 
independent features consisting of internal logical files, 
external interface files, external inputs, external outputs, 
external inquiries, and adjustment factor, and one dependent 
feature which is the actual effort measured in the number of 
actual working days spent to finish the project. 

Desharnais data set [22] contains 81 software projects. 
In this study, four projects were excluded because the data 
were incomplete. There are 10 independent features and one 
dependent feature, which is the actual effort measured in 
person-hours, constituting the model.  

Table I-IV explain each feature from the above data sets. 
Table I describes details of features from COCOMO81, 
NASA 60, and NASA93 datasets. Feature 1 to 16 are 
independent features, and feature 17 is the dependent 
feature. Table II-IV describes the same feature pattern from 
Albrecht, CF, and Desharnais data sets, i.e., all but last 
feature are independent features, respectively. These 
independent features are used as inputs for the neural 
network, while the dependent feature represents the output. 
Table V summarizes the number of projects collected, the 
minimum and maximum values of software effort in each 
data set. 

(1)  



TABLE I.  DESCRIPTION OF FEATURES FROM COCOMO81, NASA60, AND 
NASA93 DATA SETS 

No. Feature Description 

1 RELY Required Reliability  

2 DATA Database Size  

3 CPLX Product Complexity  

4 TIME Execution Time Constraint  

5 STOR Main Storage Constraint  

6 VIRT Virtual Machine Volatility  

7 TURN Computer Turnaround Time 

8 ACAP Analyst Capability 

9 AEXP Application Experience 

10 PCAP Programmer Capability 

11 VEXP Virtual Machine Experience 

12 LEXP Programming Language Experience 

13 MODP Modern Programming Practices 

14 TOOL Use of Software Tools 

15 SCED Required Development Schedule 

16 KSLOC Kilo Source Lines of  Code 

17 EFFORT Actual effort is measured in person-months 

TABLE II.   DESCRIPTION OF FEATURES FROM ALBRECHT DATA SET 

No. Feature Description 

1 IN Number of inputs   

2 OUT Number of outputs   

3 FILE Number of master files 

4 INQ Number of inquiries 

5 ADJ Adjust Function Point 

6 EFFORT Actual effort is measured in work-hours 

TABLE III.   DESCRIPTION OF FEATURES FROM CF DATA SET 

No. Feature Description 

1 ILF Internal Logical Files 

2 EIF External Interface Files 

3 EI External Inputs 

4 EO External Outputs 

5 EQ External Inquiries 

6 AF Adjustment Factor 

7 EFFORT Actual effort measured in real workingdays 

 

 

TABLE IV.   DESCRIPTION OF FEATURES FROM DESHARNAIS DATA SET 

No. Feature Description 

1 TeamExp Experience of project team in years 

2 ManagerExp Experience of project manager in years 

3 YearEnd Year of finished project 

4 Length - 

5 Transactions Number of transactions processed 

6 Entities Number of entities in the systems data 
model 

7 PointsAdjust Adjusted Function Points 

8 Envergure - 

9 PointsNonAdjust Unadjusted function point 

10 Language Language {1,2,3} 

11 EFFORT Actual effort is measured in person-hours 

TABLE V.   DATA SET SUMMARY 

Data Set No. of 
projects 

Minimum 
value of effort 

Maximum 
value of effort 

COCOMO81 63 5.90 11,400 

NASA60 60 8.40 3,240 

NASA93 93 8.40 8,211 

Albrecht 24 0.50 105.20 

CF 21 52 544 

Desharnais 77 546 23,940 

B. Feature Selection  
Our effort estimation is based on the assumption that 

there exist some relevant software features out of all 
features in each data set that actually exert significant affect 
on software effort estimation. This assumption leads to the 
problem of how to select those relevant features. The 
solution to this problem depends on the observation that 
estimating any software effort from a set of given features is 
similar to developing a function to compute the value of 
software effort using the given features as its variables. Let 
xi

(k) for 1 ≤  i ≤ m be the selected feature i of project k and m 
be the number of selected features considered in project k. 
Thus, the software effort of project k, denoted by E(k), with 
those given features {xi

(k) | 1  i m} can be related and 
written in forms of a mathematical function 

≤ ≤

 
E(k) = f (x1

(k), x2
(k), … , xm

(k)).                         (2)                     
 

Since this function is a multivariate function, it is rather 
difficult to create the function by using a multivariate 
polynomial regression technique with some degree. In this 
paper, a neural network is deployed for functional 
approximation because of its efficiency and simplicity. The 
output of each hidden neuron as well as output neuron is 
generated by a logistic function. Thus, it is rather straight 



forward to derive the function of software effort from the 
neural network. Suppose there are two input features, two 
hidden neurons, and one output neuron in a neural network 
shown in Fig. 1. All inputs are fully connected with all 
hidden neurons and all hidden neurons are fully connected 
with the output neuron. Let xi

(k) for 1  i ≤ 2 be the input of 
pattern k. Let h

≤
1, h2, h3 be the biases of hidden neurons 1, 2, 

and output neuron, respectively. Weights of hidden neuron 1 
and 2 are w11, w12, w21, w22, and of output neuron are w31, 
w32, respectively. The outputs are denoted by O1 and O2. 
The function implemented by this network has the following 
form. 

 
Figure 1. An example of Neural network model. 
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To select those relevant features, the relationship 

between the software effort E(k) and the relevant features 
must retain the property of a mathematical function. This 
implies that a selected set of features must spend only one 
value of software effort. If the selected set of features can 
spend more than one software efforts, the property of a 
mathematical function will no long hold, thereby the 
function cannot be created. Since the maximum number 
features in the benchmark data sets is only 16, it is feasible 
to try all possible combinations of the selected features. Let 
I = {1, 2, 3, …, m} be a set of feature indices. Suppose there 
are p projects in our data set.  
 
Feature Selecting Algorithm 
1.        Let S be an empty set. 
2. for  each j ∈ [1,m] do 
3.     Let Fj be an empty set. 
4.     Generate all possible combinations of j feature 

indices from set I and make each combination as 
a set. 

5.               Put each combination set in Fj. 

6.            for each feature combination index set s ∈  Fj do 
7.                for each i ∈  [1, p-1] do 
8.                    for each k ∈  [i, p] do 
9.                        if project i and project k have exactly the   

     same feature values under feature  
     combination index set s but different  

                                 E(i) and E (k) then discard set s and exit 
     for loop 

10.                     endfor 
11.                     Let S = S ∪ s 
12.                 endfor 
13.              endfor 
14.          endfor 
 

1 
E

3 

h3 w31 

w32 

O2 

O1 
w11 

w22 

w21 

w12 

h2 

2 

h1 1 

1 

A relation between the selected features and their 
software efforts can be a function if and only if the relation is 
many-to-one or one-to-one. Based on this functional relation, 
the algorithm filters all possible functional relations under 
different numbers of selected features and selects only those 
relations with minimum number of selected features for 
creating the function of software effort. Table VI shows an 
example of the how algorithm works.  

x1
(h) 

x2
(h) 

TABLE VI. AN EXAMPLE OF GIVEN DATA SET FOR EXPLAINING THE 
ALGORITHM 1 

No. of 
Projects Feature 1 Feature 2 Feature 3 Software 

effort
1 1 2 3 5 

2 2 1 2 3 

3 1 3 2 4 

4 2 2 1 6 

(3) 

(4) 

(5)  
From Table VI, it is obvious that if only one feature is 

selected, i.e. feature 1, feature 2, or feature 3, it is impossible 
to create a function of software effort with the selected 
feature as it variable since the same feature gives different 
software efforts. However, if at least two features are 
selected, namely features {1,2}, {1,3}, {2,3}, or {1,2,3}, it is 
possible to create a function of software effort based on the 
selected features. In this case, the minimum number of 
selected features possible for creating the function of 
software effort is 2. Thus, either features {1,2}, {1,3}, or 
{2,3} can be used for this purpose. Table VII shows some 
combinations of selected features from COCOMOS1 data 
set. 

TABLE VII. SELECTED SOME FEATURES FROM CANDIDATE LIST OF 
COCOMO81 DATA SET 

Candidate 
List Feature 1 Feature 2 Feature 3 

1 1 3 16 

2 1 4 16 

3 1 5 16 

4 1 6 16 



Candidate 
List Feature 1 Feature 2 Feature 3 

5 1 7 16 

6 1 8 16 

7 1 9 16 

8 1 11 16 

9 1 12 16 

10 1 13 16 

11 1 14 16 

12 1 15 16 

13 2 4 16 

14 2 5 16 

15 2 6 16 

C. Classification and Functional Approximation 
The final step is to create a software effort function as 

previously discussed. The most efficient and feasible 
technique is a feedforward neural network (FNN). However, 
the value of software effort in each project varies from a 
single digit to five digits. Table V summarizes the minimum 
and maximum values of software effort in each data set. 
Such a wide range of values makes the learning convergence 
and accuracy of estimation for the neural network almost 
impossible. To resolve these obstacles, all values must be 
grouped into their corresponding ranges. In our study, the 
values of software effort of each data set are grouped into 
two ranges as summarized in Table VIII. The output layer 
holds the functional approximation of project effort obtained 
from the FNN estimation. 
 

TABLE VIII. GROUP RANGES OF THE SOFTWARE EFORT VALUES 
 

Data Set The 1st range The 2nd range 

COCOMO81 5.90-88 98-11,400 

NASA60 8.40-117.60 117.61-3,240 

NASA93 8.40-600 636-8,211 

Albrecht 0.50-11.10 11.80-105.20 

CF 52-363 369-544 

Desharnais 546-3,472 3,542-23,940 
 

There are two major steps in creating the software effort 
function. The first step makes use of the FNN to classify the 
selected features of each project into the aforementioned two 
ranges. The second step performs the functional 
approximation for each group. During the classification of 
software effort value ranges, we set the target of the first 
range group to be 1 and the target of the second range to be 
0. The total number of projects is partitioned into 70% 
training set and 30% testing set. One neural network is used 
to carry out this classification. On the other hand, two neural 

networks are used in the functional approximation step to 
create software effort functions. The first network is 
deployed to estimate the software effort values in the first 
range while the second network is for the second range. The 
total number of projects is partitioned into two groups 
according to the range of software effort values. Each group 
is then divided into 70% training set and 30% testing set.  

After creating the software effort function, testing 
process is performed by predicting the group of software 
effort value range first. Then, the neural network 
corresponding to the software value range is used for 
approximating the software effort value. Fig. 2 illustrates the 
testing process. Both classification and functional 
approximation computation processes are realized by the 
Stuttgart Neural Network Simulator (SNNS) [23]. 

 
 

Figure 2. Testing process of the proposed method. 

D. Evaluation  
To assess the output accuracy of the proposed model, we 

use Mean Magnitude Relative Error (MMRE) and 
Percentage Relative Error Deviation within x or PRED(x) 
based on the same basic unit-less value of Magnitude 
Relative Error (MRE) [24]. The MRE is defined as 

i

ii
i y

yy
MRE

−
=

ˆ
.                (6) 

where yi is the actual effort, and iy  is the estimated effort, 
both of which are used in software project i. The MMRE and 
PRED(x) are defined below. 

∑
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where N is the total number of software projects. Generally, 
the value of MMRE smaller than or equal to 0.25 is 
considered an acceptable level of performance for effort 
estimation model [24]. 
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PRED(x) is the percentage of prediction within x percent of 
the actual value. Normally, the value of x is set to 0.25 
corresponding to the acceptable level of MMRE. A small 
MMRE value and large PRED value are preferred as they are 
apparent from Equation 7 and 8 to attain any reasonable 
software effort predictions. 

In addition to adopting standard MMRE and PRED(x) 
measures, we compared the estimated effort determined by 
the proposed model with the actual effort from each data set. 
The resulting estimation will be described in the next 
section. 

IV. EXPERIMENTAL RESULTS  
This section explains the accuracy of average effort 

estimation by the proposed model, as well as the 
performance against other models. 

A. Results of effort estimation 
We employed 30% of test data set from COCOMO81, 

NASA60, NASA93, Albrecht, CF, and Desharnias to 
measure the estimated efforts in comparison with the actual 
values. The comparative results are depicted in Table IX, 
depicting the actual effort value (obtained from the data set), 
estimated effort value using a full-fledged feature set, and 
estimation of the proposed model computed by only a few 
selected features.  The set of selected features utilized in the 
estimation by the proposed model from each data set are 
RELY, VIRT, and KSLOC (COCOMO81), CPLX, PCAP, 
and KSLOC (NASA60), DATA, TURN, PCAP, and 
KSLOC (NASA93), FILE and INQ (Albrecht), EIF and AF 
(CF), and Entities and PointsNonAdjust (Desharnais) data 
sets. 

TABLE  IX.  COMPARATIVE RESULTS OF ESTIMATED EFFORT AND ACTUAL 
EFFORT FOR ALL DATA SETS 

Actual 
Effort Estimated Effort 

Original 
Model Our Model 

Data Set Test 
Set Average 

 Effort 

N
o.

fe
a

tu
re

 Average 
Effort N

o.
fe

a
tu

re
 Average 

Effort 

COCOMO81 18 207.90 16 232.88 3 228.99 

NASA60 16 340.19 16 - 3 354.66 

NASA93 26 734.03 16 - 4 722.96 

Albrecht 6 12.07 5 16.67 2 12.04 

CF 6 359.33 6 - 2 353.42 

Desharnais 22 5,119.36 10 - 2 4,852.17 

 
Fig. 3-8 depict graphic plots of average estimated effort 

against average actual effort in all test sets, where x-axis 
represents software project test sets, y-axis represents actual 
effort, starred-solid line represents actual effort, and circle-
solid line represents estimated effort. For each data set, the 
estimation computed by the few selected features is 
compared with the actual value of that set.  For example, the 

plot of COCOMO81 data set of Fig. 3 shows that only the 
10th project test set exhibited an unusual estimation burst.  
The sporadic phenomena were observed in NASA93 and CF 
data sets as well.  Such idiosyncrasies can be attributed from 
several causes. The predominant ones are (1) duplicated 
inputs (2) statistically inadequate data points in the data set 
(3) unusually dispersed data values (as shown in Table V). 
The latter two causes are the major caveats that hinder the 
estimation process, thereby the neural network model is 
unable to adequately capture the significance of dispersion 
pattern to arrive at any closer prediction.  This is the only 
limitation of the proposed model which is the same 
limitation for all statistical inference techniques. 

 

0 2 4 6 8 10 12 14 16 18
0

200

400

600

800

1000

1200

1400

1600

 

 

actual value
estimated value

 
 Figure 3. Comparative results of actual and estimated efforts with 

COCOMO81 data set. 
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Figure 4. Comparative results of actual and estimated efforts with 

NASA60 data set. 
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Figure 5. Comparative results of actual and estimated efforts with 
NASA93 data set. 

 



 
Figure 6. Comparative results of actual and estimated efforts with 

Albrecht data set. 
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Figure 7. Comparative results of actual and estimated efforts with CF data 

set. 
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Figure 8. Comparative results of actual and estimated efforts with 

Desharnais data set. 

B. Comparative results 
Evaluation of standard comparative measures, i.e., 

MMRE and PRED(0.25), except for feature subset selection 
[13] reporting PRED(0.30), for the proposed model against 
other estimation models was carried out. A few well 
established ones are Grey relational analysis [6], Case based 
reasoning [6], Classification and regression trees [6], 
Artificial neural network [6], and Social choice (weighted, 
CO) [14] in COCOMO81 data set, Feature subset selection 
[13] in NASA60 data set, Project selection analogy based 
estimation [4], Adjusted analogy based estimation-
Minkowski [5], Grey relation analysis with genetic algorithm 
[6], Wavelet neural network-Gaussian [8], Social choice 
(weighted, BO) [14], Unequally weighted analogy [15], 

Linearly weighted analogy [15], Nonlinearly weighted 
analogy [15], and Analogy based estimation [16] in Albrecht 
data set, Wavelet neural network-Morlet [8], Wavelet neural 
network-Gaussian, and Adjusted analogy based estimation-
Euclidean distance [5] in CF data set, Project selection 
analogy based estimation [4], Artificial neural network [4], 
Redial basis function [4], Classification and regression trees 
[4], and Analogy based estimation [16] in Desharnais data 
set. The comparative results are shown in Table X.  

TABLE X.  COMPARATIVE RESULTS OF PROPOSED AND SELECTED 
MODELS BASED ON STANDARD DATA SETS 

Model PRED (0.25) MMRE 

Comparison with COCOMO81 data set 

Proposed model 0.56 1.00 
Grey relational analysis with genetic 
algorithm 0.38 0.69 

Case based reasoning 0.12 4.46 

Classification and regression trees 0.25 2.44 

Artificial neural network 0.11 1.43 

Social choice (weighted, CO) 0.46 10.42 

Comparison of FSS model with NASA60 data set 

Proposed model 0.81 0.18 

Feature subset selection 0.81(0.30) - 

Comparison with Albrecht data set 

Proposed model 1.00 0.14 
Project selection analogy based 
estimation 0.25 0.42 

Adjusted analogy based estimation-
Minkowski 0.61 0.43 

Grey relation analysis with genetic 
algorithm 0.48 0.32 

Wavelet neural network-Gaussian 0.88 0.07 

Social choice (weighted, BO) 0.71 0.98 

Unequally weighted analogy 0.64 0.44 

Linearly weighted analogy 0.70 0.32 

Nonlinearly weighted analogy 0.57 0.33 

Analogy based estimation 0.33 0.62 

Comparison with CF data set 

Proposed model 0.83 0.10 

Wavelet neural network-Morlet 0.67 0.20 

Wavelet neural network-Gaussian 0.57 0.23 
Adjusted analogy based estimation-
Euclidean distance 0.43 0.52 

Comparison with Desharnais data set 

Proposed model 0.77 0.16 
Project selection analogy based 
estimation 0.33 0.41 

Artificial neural network 0.22 0.57 



Model PRED (0.25) MMRE 

Redial basis function 0.33 0.42 

Classification and regression trees 0.30 0.52 

Analogy based estimation 0.36 0.64 
 
The above results indicate that the proposed model yields 
the highest PRED(0.25) and near optimal MMRE for every 
data set. 

V. CONCLUSION 
This research has demonstrated the proposed neural 

networks approach that yields high software effort 
prediction accuracy in comparison with other well 
established effort estimation models using only a few 
features. The findings were further reaffirmed by remakable 
comparative results of the average estimation effort with the 
corresponding actual values. The implications of the 
proposed endeavor are seveal folds. First and foremost, the 
model can serve as a cost-saving project effort estimation 
means to pinpoint and select only relevant and necessary 
features. Second, project managers and experts can spend 
less time to predict software project cost and more time on 
more important issues. Third, less computation time and 
effort are required, thereby energy saving mandates can be 
easily adhered. And last but not least, the proposed approach 
will lend itself to future work on machine learning for 
efficient and accurate project cost estimation. 

Bearing all of the above contributions in mind, two 
important future research candidates are (1) the 
aforementioned limitation about data adequacy (2) more 
efficient input clustering mechanisms to handle unusually 
dispersed data. In so doing, our straightforward proposed 
model will be an ideal tool for filtering superflorous features 
of software effort estimation. 
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