
Estimating Software Effort with Minimum Features using
Neural Functional Approximation

Pichai Jodpimai, Peraphon Sophatsathit, and Chidchanok Lursinsap
Advanced Virtual and Intelligent Computing (AVIC) Center

Department of Mathematics, Faculty of Science, Chulalongkorn University
Bangkok, Thailand

E-mail: pichai.j@student.chula.ac.th, peraphon.s@chula.ac.th, lchidcha@pioneer.netserv.chula.ac.th

Abstract— The aim of this study is to improve software effort
estimation by incorporating straightforward mathematical
principles and artificial neural network technique. Our process
consists of three major steps. The first step concerns data
preparation from each considered database. The second step is
to reduce the number of given features by considering only
those relevant ones. The final step is to transform the problem
of estimating software effort to the problems of classification
and functional approximation by using a feedforward neural
network. Experimental data are taken from well-known public
domains. The results are systematically compared with related
prior works using only a few features so obtained, yet
demonstrate that the proposed model yields satisfactory
estimation accuracy based on MMRE and PRED measures.

Keywords- Software Effort Estimation; Artificial Neural
Networks; Functional Approximation; MMRE; PRED

I. INTRODUCTION
Software effort estimation is the process in planning

stage of software development life cycle for predicting the
software effort to estimate software costs required [1]. An
estimation precision of software project cost is important for
software project management. A numbers of techniques have
been introduced in software development effort estimation
such as regression analysis, statistical model, genetic
algorithm, fuzzy, fuzzy-neuro systems, and artificial neural
networks. An artificial neural network is a computational
approach to model complex relationships between
independent and dependent features. However, the problems
still significantly challenge researchers and experts to
improve estimation accuracy. One predominant difficulty
that estimation models must reckon with is the number of
cost drivers involved in the effort prediction process.
Consequently, the objectives of this research are to enhance
software effort estimation accuracy and to reduce the number
of features. The proposed model compares its estimation
with the actual value and employs MMRE and PRED
measures to gauge the estimation accuracy, all of which are
based on smaller number of candidate features than what
originally have available.

The organization of this paper is as follows. Section 2
discusses literature review on software effort estimation
models. Section 3 describes details of the proposed model
encompassing data source and methodology. Section 4

explains some note worthy implications of the experiments.
The conclusion and future work are discussed in the last
section.

II. RELATED WORK
The early techniques for software effort estimation were

typically based on statistics and regression analysis. Boehm’s
COnstructive COst MOdel (COCOMO) [2] and Putnam’s
Software LIfecycle Management (SLIM) [3] are early well-
known software effort estimation models. In the mean time,
many new approaches have been proposed. In analogy-based
estimation, Li, et al [4] introduced the methodology for
selection of proper projects using genetic algorithm to
improve the performance of analogy-based effort prediction.
Chiu and Huang [5] considered improving analogy-based
effort estimation with the help of genetic algorithm for
adjusting reuse effort by measuring similarity distances
between pairs of projects using Euclidean, Manhattan, and
Minkowski methods. Huang, et al [6] investigated the
potential means to improve the accuracy of effort estimation,
where grey relational analysis and genetic algorithm were
used to handle similarity measures of complex relations and
found appropriate weight in each effort driver, respectively.
Lefley and Shepperd [7] indicated that genetic programming
yielded good accuracy of software effort estimations based
on a management consultancy organization. Kumar, et al [8]
applied wavelet neural network (WNN) for software effort
prediction with the help of Morlet and Gaussian transfer
functions. In addition, they proposed a threshold acceptance
training algorithm for wavelet neural network (TAWNN).
Tadayon [9] investigated the use of expert judgment,
artificial neural networks, and COCOMO II model for
software effort prediction. Rao, et al [10] proposed
Functional Link Artificial Neural Network (FLANN) to
reduce the computational complexity suitable for on-line
applications. Pedrycz, et al [11] introduced a granular model
of software effort estimation designed based on
experimentally developed information granules. It was
concerned with the development of software effort
estimation models using fuzzy sets. Huang and Chiu [12]
proposed a fuzzy neural network for software effort
estimations by applying artificial neural network to fuzzy
inference processes. Recently, researchers try to take other

technique mix into the original models to improve effort
prediction accuracy.

Another important aspect of effort estimation is feature
subset selection method. Chen, et al [13] suggested effort
improvement estimation using WRAPPER technique to
select the feature subset. Koch and Mitlohner [14] employed
the concept of social choice for software project effort
estimation, substituting the voters by software project
attributes. Huang and Chiu [15] investigated the effect on
estimation accuracy by adopting genetic algorithm for use in
analogy-based software effort estimation models to
determine the appropriate weighted similarity measures of
effort drivers. The approach used three weighted analogy
methods, namely, the unequally weighted, the linearly
weighted, and the nonlinearly weighted. The linearly
weighted deals with a linear equation for each effort driver as
the weight of distance measure; the unequally weighted
assigns a constant weight to distance measure for each effort
driver; and the nonlinearly weighted uses a separate
nonlinear equation as a weight of distance measure for each
effort driver. Shepperd and Schofield [16] employed
analogies to estimate software effort data through the case-
base reasoning technique and other prediction approaches. In
short, researchers have expended numerous endeavors on
effort estimation at the expense of full fledged software
project attributes. As such, we propose a technique that
attempts to reduce the costly estimation process by utilizing
only pertinent software project features, attributes, or cost
drivers (depending on the underlying metrics, e.g., FP,
KSLOC, KDSI, etc.), but hereafter will be referred to as
features.

III. PROPOSED METHODOLOGY
Our process consists of three major steps. The first step

concerns data preparation from each considered database.
The second step is to reduce the number of given features by
considering only those relevant ones. The final step is to
transform the problem of estimating software effort to the
problems of classification and functional approximation by
using a feedforward neural network. Detail of each step is
described in the sections that follow.

A. Data Preparation and Database Selection
All standard data sets are chosen from available software

engineering public domain as follows. First and foremost,
COCOMO81 data set [2] was selected, consisting of 63
software projects in various programming languages, such
as FORTAN, Pascal, and C. The nature of the projects
includes Business, Process control, Human-Machine
Interaction, Scientific, Support, and System. To construct
the model, the original 16 independent features and one
dependent feature from the data set to accommodate
COCOMO81 Equation are adopted and computed as shown
in (1).

).(*)(* ∏
=

=
15

1i
iEMbKSLOCaEffort

where Effort is the estimated effort measured in person-
months; a and b are specific parameters representing three
software development modes, namely, Organic, Semi-
detached, and Embedded; KSLOC is the thousands of lines
of code in the program excluding blank and comment lines
(some literatures use KDSI whose meaning is slightly
different, but is considered interchangeable with KSLOC in
the context of this work as the focus is on more important
issues). The value of KSLOC is estimated directly or
derived from function point analysis (FPA); and EM is the
effort multiplier measured from project’s environmental
factors, usually referred to effort drivers.

There are 60 projects from 1980 to 1990 in NASA60
data set [17] and 93 projects from 1971 to 1987 in NASA93
[18]. Both data sets are in COCOMO81 format collected
from different NASA centers published in PRedictOr
Models In Software Engineering (PROMISE).

Albrecht data set [19], [20] consists of 24 software
projects from IBM Data Processing Services (IBMDPS)
organization developed in third generation languages. Of the
24 projects, 18 were written in COBOL, 4 in PL1, and 2 in
DMS language. We employed 6 features in the model,
encompassing 5 independent features which include number
of inputs, number of outputs, number of inquiries, number
of master files, and adjustment factor, and one dependent
feature which is the actual effort measured in work-hours.
Meanwhile, we exclude source lines of code that appears in
this data set since it is not a parameter for calculating
function point using Albrecht model.

CF data set [21] has 21 historical projects derived from
Canadian Financial organization, using the FPA rules of the
International Function Point Users Group (IFPUG)
standards. We adopted 7 features which include 6
independent features consisting of internal logical files,
external interface files, external inputs, external outputs,
external inquiries, and adjustment factor, and one dependent
feature which is the actual effort measured in the number of
actual working days spent to finish the project.

Desharnais data set [22] contains 81 software projects.
In this study, four projects were excluded because the data
were incomplete. There are 10 independent features and one
dependent feature, which is the actual effort measured in
person-hours, constituting the model.

Table I-IV explain each feature from the above data sets.
Table I describes details of features from COCOMO81,
NASA 60, and NASA93 datasets. Feature 1 to 16 are
independent features, and feature 17 is the dependent
feature. Table II-IV describes the same feature pattern from
Albrecht, CF, and Desharnais data sets, i.e., all but last
feature are independent features, respectively. These
independent features are used as inputs for the neural
network, while the dependent feature represents the output.
Table V summarizes the number of projects collected, the
minimum and maximum values of software effort in each
data set.

(1)

TABLE I. DESCRIPTION OF FEATURES FROM COCOMO81, NASA60, AND
NASA93 DATA SETS

No. Feature Description

1 RELY Required Reliability

2 DATA Database Size

3 CPLX Product Complexity

4 TIME Execution Time Constraint

5 STOR Main Storage Constraint

6 VIRT Virtual Machine Volatility

7 TURN Computer Turnaround Time

8 ACAP Analyst Capability

9 AEXP Application Experience

10 PCAP Programmer Capability

11 VEXP Virtual Machine Experience

12 LEXP Programming Language Experience

13 MODP Modern Programming Practices

14 TOOL Use of Software Tools

15 SCED Required Development Schedule

16 KSLOC Kilo Source Lines of Code

17 EFFORT Actual effort is measured in person-months

TABLE II. DESCRIPTION OF FEATURES FROM ALBRECHT DATA SET

No. Feature Description

1 IN Number of inputs

2 OUT Number of outputs

3 FILE Number of master files

4 INQ Number of inquiries

5 ADJ Adjust Function Point

6 EFFORT Actual effort is measured in work-hours

TABLE III. DESCRIPTION OF FEATURES FROM CF DATA SET

No. Feature Description

1 ILF Internal Logical Files

2 EIF External Interface Files

3 EI External Inputs

4 EO External Outputs

5 EQ External Inquiries

6 AF Adjustment Factor

7 EFFORT Actual effort measured in real workingdays

TABLE IV. DESCRIPTION OF FEATURES FROM DESHARNAIS DATA SET

No. Feature Description

1 TeamExp Experience of project team in years

2 ManagerExp Experience of project manager in years

3 YearEnd Year of finished project

4 Length -

5 Transactions Number of transactions processed

6 Entities Number of entities in the systems data
model

7 PointsAdjust Adjusted Function Points

8 Envergure -

9 PointsNonAdjust Unadjusted function point

10 Language Language {1,2,3}

11 EFFORT Actual effort is measured in person-hours

TABLE V. DATA SET SUMMARY

Data Set No. of
projects

Minimum
value of effort

Maximum
value of effort

COCOMO81 63 5.90 11,400

NASA60 60 8.40 3,240

NASA93 93 8.40 8,211

Albrecht 24 0.50 105.20

CF 21 52 544

Desharnais 77 546 23,940

B. Feature Selection
Our effort estimation is based on the assumption that

there exist some relevant software features out of all
features in each data set that actually exert significant affect
on software effort estimation. This assumption leads to the
problem of how to select those relevant features. The
solution to this problem depends on the observation that
estimating any software effort from a set of given features is
similar to developing a function to compute the value of
software effort using the given features as its variables. Let
xi

(k) for 1 ≤ i ≤ m be the selected feature i of project k and m
be the number of selected features considered in project k.
Thus, the software effort of project k, denoted by E(k), with
those given features {xi

(k) | 1 i m} can be related and
written in forms of a mathematical function

≤ ≤

E(k) = f (x1

(k), x2
(k), … , xm

(k)). (2)

Since this function is a multivariate function, it is rather
difficult to create the function by using a multivariate
polynomial regression technique with some degree. In this
paper, a neural network is deployed for functional
approximation because of its efficiency and simplicity. The
output of each hidden neuron as well as output neuron is
generated by a logistic function. Thus, it is rather straight

forward to derive the function of software effort from the
neural network. Suppose there are two input features, two
hidden neurons, and one output neuron in a neural network
shown in Fig. 1. All inputs are fully connected with all
hidden neurons and all hidden neurons are fully connected
with the output neuron. Let xi

(k) for 1 i ≤ 2 be the input of
pattern k. Let h

≤
1, h2, h3 be the biases of hidden neurons 1, 2,

and output neuron, respectively. Weights of hidden neuron 1
and 2 are w11, w12, w21, w22, and of output neuron are w31,
w32, respectively. The outputs are denoted by O1 and O2.
The function implemented by this network has the following
form.

Figure 1. An example of Neural network model.

)112.)(
211.)(

1(1
1

1
hwxwx kk

e
O

++−
+

= .

)222.)(
221.)(

1(2
1

1
hwxwx kk

e
O

++−
+

= .

)332.231.1(1

1
hwOwOe

E
++−+

= .

To select those relevant features, the relationship

between the software effort E(k) and the relevant features
must retain the property of a mathematical function. This
implies that a selected set of features must spend only one
value of software effort. If the selected set of features can
spend more than one software efforts, the property of a
mathematical function will no long hold, thereby the
function cannot be created. Since the maximum number
features in the benchmark data sets is only 16, it is feasible
to try all possible combinations of the selected features. Let
I = {1, 2, 3, …, m} be a set of feature indices. Suppose there
are p projects in our data set.

Feature Selecting Algorithm
1. Let S be an empty set.
2. for each j ∈ [1,m] do
3. Let Fj be an empty set.
4. Generate all possible combinations of j feature

indices from set I and make each combination as
a set.

5. Put each combination set in Fj.

6. for each feature combination index set s ∈ Fj do
7. for each i ∈ [1, p-1] do
8. for each k ∈ [i, p] do
9. if project i and project k have exactly the

 same feature values under feature
 combination index set s but different

 E(i) and E (k) then discard set s and exit
 for loop

10. endfor
11. Let S = S ∪ s
12. endfor
13. endfor
14. endfor

1
E

3

h3 w31

w32

O2

O1
w11

w22

w21

w12

h2

2

h1 1

1

A relation between the selected features and their
software efforts can be a function if and only if the relation is
many-to-one or one-to-one. Based on this functional relation,
the algorithm filters all possible functional relations under
different numbers of selected features and selects only those
relations with minimum number of selected features for
creating the function of software effort. Table VI shows an
example of the how algorithm works.

x1
(h)

x2
(h)

TABLE VI. AN EXAMPLE OF GIVEN DATA SET FOR EXPLAINING THE
ALGORITHM 1

No. of
Projects Feature 1 Feature 2 Feature 3 Software

effort
1 1 2 3 5

2 2 1 2 3

3 1 3 2 4

4 2 2 1 6

(3)

(4)

(5)
From Table VI, it is obvious that if only one feature is

selected, i.e. feature 1, feature 2, or feature 3, it is impossible
to create a function of software effort with the selected
feature as it variable since the same feature gives different
software efforts. However, if at least two features are
selected, namely features {1,2}, {1,3}, {2,3}, or {1,2,3}, it is
possible to create a function of software effort based on the
selected features. In this case, the minimum number of
selected features possible for creating the function of
software effort is 2. Thus, either features {1,2}, {1,3}, or
{2,3} can be used for this purpose. Table VII shows some
combinations of selected features from COCOMOS1 data
set.

TABLE VII. SELECTED SOME FEATURES FROM CANDIDATE LIST OF
COCOMO81 DATA SET

Candidate
List Feature 1 Feature 2 Feature 3

1 1 3 16

2 1 4 16

3 1 5 16

4 1 6 16

Candidate
List Feature 1 Feature 2 Feature 3

5 1 7 16

6 1 8 16

7 1 9 16

8 1 11 16

9 1 12 16

10 1 13 16

11 1 14 16

12 1 15 16

13 2 4 16

14 2 5 16

15 2 6 16

C. Classification and Functional Approximation
The final step is to create a software effort function as

previously discussed. The most efficient and feasible
technique is a feedforward neural network (FNN). However,
the value of software effort in each project varies from a
single digit to five digits. Table V summarizes the minimum
and maximum values of software effort in each data set.
Such a wide range of values makes the learning convergence
and accuracy of estimation for the neural network almost
impossible. To resolve these obstacles, all values must be
grouped into their corresponding ranges. In our study, the
values of software effort of each data set are grouped into
two ranges as summarized in Table VIII. The output layer
holds the functional approximation of project effort obtained
from the FNN estimation.

TABLE VIII. GROUP RANGES OF THE SOFTWARE EFORT VALUES

Data Set The 1st range The 2nd range

COCOMO81 5.90-88 98-11,400

NASA60 8.40-117.60 117.61-3,240

NASA93 8.40-600 636-8,211

Albrecht 0.50-11.10 11.80-105.20

CF 52-363 369-544

Desharnais 546-3,472 3,542-23,940

There are two major steps in creating the software effort
function. The first step makes use of the FNN to classify the
selected features of each project into the aforementioned two
ranges. The second step performs the functional
approximation for each group. During the classification of
software effort value ranges, we set the target of the first
range group to be 1 and the target of the second range to be
0. The total number of projects is partitioned into 70%
training set and 30% testing set. One neural network is used
to carry out this classification. On the other hand, two neural

networks are used in the functional approximation step to
create software effort functions. The first network is
deployed to estimate the software effort values in the first
range while the second network is for the second range. The
total number of projects is partitioned into two groups
according to the range of software effort values. Each group
is then divided into 70% training set and 30% testing set.

After creating the software effort function, testing
process is performed by predicting the group of software
effort value range first. Then, the neural network
corresponding to the software value range is used for
approximating the software effort value. Fig. 2 illustrates the
testing process. Both classification and functional
approximation computation processes are realized by the
Stuttgart Neural Network Simulator (SNNS) [23].

Figure 2. Testing process of the proposed method.

D. Evaluation
To assess the output accuracy of the proposed model, we

use Mean Magnitude Relative Error (MMRE) and
Percentage Relative Error Deviation within x or PRED(x)
based on the same basic unit-less value of Magnitude
Relative Error (MRE) [24]. The MRE is defined as

i

ii
i y

yy
MRE

−
=

ˆ
. (6)

where yi is the actual effort, and iy is the estimated effort,
both of which are used in software project i. The MMRE and
PRED(x) are defined below.

∑
=

=
N

i
iMRE

N
MMRE

1

1 . (7)

where N is the total number of software projects. Generally,
the value of MMRE smaller than or equal to 0.25 is
considered an acceptable level of performance for effort
estimation model [24].

∑
= ⎪
⎩

⎪
⎨

⎧
≤

=
N

1i

i

Otherwise0
xMREif1

N
1xPRED)(. (8)

PRED(x) is the percentage of prediction within x percent of
the actual value. Normally, the value of x is set to 0.25
corresponding to the acceptable level of MMRE. A small
MMRE value and large PRED value are preferred as they are
apparent from Equation 7 and 8 to attain any reasonable
software effort predictions.

In addition to adopting standard MMRE and PRED(x)
measures, we compared the estimated effort determined by
the proposed model with the actual effort from each data set.
The resulting estimation will be described in the next
section.

IV. EXPERIMENTAL RESULTS
This section explains the accuracy of average effort

estimation by the proposed model, as well as the
performance against other models.

A. Results of effort estimation
We employed 30% of test data set from COCOMO81,

NASA60, NASA93, Albrecht, CF, and Desharnias to
measure the estimated efforts in comparison with the actual
values. The comparative results are depicted in Table IX,
depicting the actual effort value (obtained from the data set),
estimated effort value using a full-fledged feature set, and
estimation of the proposed model computed by only a few
selected features. The set of selected features utilized in the
estimation by the proposed model from each data set are
RELY, VIRT, and KSLOC (COCOMO81), CPLX, PCAP,
and KSLOC (NASA60), DATA, TURN, PCAP, and
KSLOC (NASA93), FILE and INQ (Albrecht), EIF and AF
(CF), and Entities and PointsNonAdjust (Desharnais) data
sets.

TABLE IX. COMPARATIVE RESULTS OF ESTIMATED EFFORT AND ACTUAL
EFFORT FOR ALL DATA SETS

Actual
Effort Estimated Effort

Original
Model Our Model

Data Set Test
Set Average

 Effort

N
o.

fe
a

tu
re

 Average
Effort N

o.
fe

a
tu

re
 Average

Effort

COCOMO81 18 207.90 16 232.88 3 228.99

NASA60 16 340.19 16 - 3 354.66

NASA93 26 734.03 16 - 4 722.96

Albrecht 6 12.07 5 16.67 2 12.04

CF 6 359.33 6 - 2 353.42

Desharnais 22 5,119.36 10 - 2 4,852.17

Fig. 3-8 depict graphic plots of average estimated effort

against average actual effort in all test sets, where x-axis
represents software project test sets, y-axis represents actual
effort, starred-solid line represents actual effort, and circle-
solid line represents estimated effort. For each data set, the
estimation computed by the few selected features is
compared with the actual value of that set. For example, the

plot of COCOMO81 data set of Fig. 3 shows that only the
10th project test set exhibited an unusual estimation burst.
The sporadic phenomena were observed in NASA93 and CF
data sets as well. Such idiosyncrasies can be attributed from
several causes. The predominant ones are (1) duplicated
inputs (2) statistically inadequate data points in the data set
(3) unusually dispersed data values (as shown in Table V).
The latter two causes are the major caveats that hinder the
estimation process, thereby the neural network model is
unable to adequately capture the significance of dispersion
pattern to arrive at any closer prediction. This is the only
limitation of the proposed model which is the same
limitation for all statistical inference techniques.

0 2 4 6 8 10 12 14 16 18
0

200

400

600

800

1000

1200

1400

1600

actual value
estimated value

 Figure 3. Comparative results of actual and estimated efforts with

COCOMO81 data set.

0 2 4 6 8 10 12 14 16
0

500

1000

1500

2000

2500

actual value
estimated value

Figure 4. Comparative results of actual and estimated efforts with

NASA60 data set.

0 5 10 15 20 25 30
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

actual value
estimated value

Figure 5. Comparative results of actual and estimated efforts with
NASA93 data set.

Figure 6. Comparative results of actual and estimated efforts with

Albrecht data set.

1 2 3 4 5 6
150

200

250

300

350

400

450

500

550

actual value
estimated value

Figure 7. Comparative results of actual and estimated efforts with CF data

set.

0 5 10 15 20 25
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

actual value
estimated value

Figure 8. Comparative results of actual and estimated efforts with

Desharnais data set.

B. Comparative results
Evaluation of standard comparative measures, i.e.,

MMRE and PRED(0.25), except for feature subset selection
[13] reporting PRED(0.30), for the proposed model against
other estimation models was carried out. A few well
established ones are Grey relational analysis [6], Case based
reasoning [6], Classification and regression trees [6],
Artificial neural network [6], and Social choice (weighted,
CO) [14] in COCOMO81 data set, Feature subset selection
[13] in NASA60 data set, Project selection analogy based
estimation [4], Adjusted analogy based estimation-
Minkowski [5], Grey relation analysis with genetic algorithm
[6], Wavelet neural network-Gaussian [8], Social choice
(weighted, BO) [14], Unequally weighted analogy [15],

Linearly weighted analogy [15], Nonlinearly weighted
analogy [15], and Analogy based estimation [16] in Albrecht
data set, Wavelet neural network-Morlet [8], Wavelet neural
network-Gaussian, and Adjusted analogy based estimation-
Euclidean distance [5] in CF data set, Project selection
analogy based estimation [4], Artificial neural network [4],
Redial basis function [4], Classification and regression trees
[4], and Analogy based estimation [16] in Desharnais data
set. The comparative results are shown in Table X.

TABLE X. COMPARATIVE RESULTS OF PROPOSED AND SELECTED
MODELS BASED ON STANDARD DATA SETS

Model PRED (0.25) MMRE

Comparison with COCOMO81 data set

Proposed model 0.56 1.00
Grey relational analysis with genetic
algorithm 0.38 0.69

Case based reasoning 0.12 4.46

Classification and regression trees 0.25 2.44

Artificial neural network 0.11 1.43

Social choice (weighted, CO) 0.46 10.42

Comparison of FSS model with NASA60 data set

Proposed model 0.81 0.18

Feature subset selection 0.81(0.30) -

Comparison with Albrecht data set

Proposed model 1.00 0.14
Project selection analogy based
estimation 0.25 0.42

Adjusted analogy based estimation-
Minkowski 0.61 0.43

Grey relation analysis with genetic
algorithm 0.48 0.32

Wavelet neural network-Gaussian 0.88 0.07

Social choice (weighted, BO) 0.71 0.98

Unequally weighted analogy 0.64 0.44

Linearly weighted analogy 0.70 0.32

Nonlinearly weighted analogy 0.57 0.33

Analogy based estimation 0.33 0.62

Comparison with CF data set

Proposed model 0.83 0.10

Wavelet neural network-Morlet 0.67 0.20

Wavelet neural network-Gaussian 0.57 0.23
Adjusted analogy based estimation-
Euclidean distance 0.43 0.52

Comparison with Desharnais data set

Proposed model 0.77 0.16
Project selection analogy based
estimation 0.33 0.41

Artificial neural network 0.22 0.57

Model PRED (0.25) MMRE

Redial basis function 0.33 0.42

Classification and regression trees 0.30 0.52

Analogy based estimation 0.36 0.64

The above results indicate that the proposed model yields
the highest PRED(0.25) and near optimal MMRE for every
data set.

V. CONCLUSION
This research has demonstrated the proposed neural

networks approach that yields high software effort
prediction accuracy in comparison with other well
established effort estimation models using only a few
features. The findings were further reaffirmed by remakable
comparative results of the average estimation effort with the
corresponding actual values. The implications of the
proposed endeavor are seveal folds. First and foremost, the
model can serve as a cost-saving project effort estimation
means to pinpoint and select only relevant and necessary
features. Second, project managers and experts can spend
less time to predict software project cost and more time on
more important issues. Third, less computation time and
effort are required, thereby energy saving mandates can be
easily adhered. And last but not least, the proposed approach
will lend itself to future work on machine learning for
efficient and accurate project cost estimation.

Bearing all of the above contributions in mind, two
important future research candidates are (1) the
aforementioned limitation about data adequacy (2) more
efficient input clustering mechanisms to handle unusually
dispersed data. In so doing, our straightforward proposed
model will be an ideal tool for filtering superflorous features
of software effort estimation.

REFERENCES
[1] P. Jodpimai, P. Sophatsathit, and C. Lursinsap, “Analysis of Effort

Estimation Based on Software Project Models,” Proc. IEEE Symp.
Communication and Information Technology, IEEE Press, Sep. 2009,
pp. 715-720.

[2] B. W. Boehm, Software Engineering Economics, Prentice Hall, 1981.
[3] L. H. Putnam, “A General Empirical Solution to the Macro Software

Sizing and Estimating Problem,” Proc. IEEE Transactions on
Software Engineering, IEEE Press, July. 1978, pp. 345-361.

[4] Y. F. Li, M. Xie, and T. N. Goh, “A Study of Genetic Algorithm for
Project Selection for Analogy Based Software Cost Estimation,”
Proc. IEEE Industrial Engineering and Engineering Management,
IEEE Press, Dec. 2007, pp. 1256-1260.

[5] N. H. Chiu and S. J. Huang, “The Adjusted Analogy-Based Software
Effort Estimation Based on Similarity Distances,” Journal of Systems
and Software, vol. 80, Apr. 2007, pp. 628-640,
doi:10.1016/j.jss.2007.12.793.

[6] S. Jen Huang, N. H. Chiu, and L. W. Chen, “Integration of The Grey
Relational Analysis with Genetic Algorithm for Software Effort
Estimation,” European Journal of Operational Research, vol. 188,
Aug. 2008, pp. 898-909, doi:10.1016/j.ejor.2007.07.002.

[7] M. Lefley and M. J. Shepperd, “Using Genetic Programming to
Improve Software Effort Estimation Based on General Data Sets,” in
LNCS, vol. 2724, E. Cantu-Paz et al., Eds. Springer, 2003, pp. 2477-
2487, doi:10.1007/3-540-45110-2.

[8] K. V. Kumar, V. Ravi, M. Carr, and N.R. Kiran, “Software
Development Cost Estimation Using Wavelet Neural Networks,”
Journal of Systems and Software, vol. 81, Nov. 2008, pp. 1853-1867,
doi:10.1016/j.jss.2007.12.793.

[9] N. Tadayon, “Neural Network Approach for Software Cost
Estimation,” Proc. IEEE The International Conference on Information
Technology: Coding and Computing (ITCC’05), IEEE Press, Apr.
2005, pp. 815-818.

[10] B. T. Rao, “A Novel Neural Network Approach For Software Cost
Estimation Using Functional Link Artificial Neural Network
(FLANN),” International Journal of Computer Science and Network
Security, vol. 9, Jun. 2009, pp. 126-131.

[11] W. Pedrycz, J. F. Peters, and S. Ramanna, “A Fuzzy Set Approach to
Cost Estimation of Software Projects,” Proc. IEEE Canadian
Conference on Electrical and Computer Engineering Shaw
Conference Center, IEEE Press, May. 1999, pp. 1068-1073.

[12] S. J. Huang and N. H. Chiu, “Applying Fuzzy Neural Network to
Estimate Software Development Effort,” Applied Intelligence,
Springer Press, Apr. 2009, pp. 73-83, doi:10.1007/s10489-007-0097-
4.

[13] Z. Chen, T. Menzies, D. Port, and B. Boehm, “Feature Subset
Selection Can Improve Software Cost Estimation Accuracy,” Proc.
Predictor models in software engineering, ACM Press, May. 2005,
pp. 1-6.

[14] S. Koch and J. Mitlohner, “Software Project Effort Estimation with
Voting Rules,” Proc. Decision Support System, ACM Press, Mar.
2009, pp. 895-901.

[15] S.J. Huang and N.H. Chiu, “Optimization of Analogy Weights by
Genetic Algorithm for Software Effort Estimation,” Information and
Software technology, vol. 48, Nov. 2006, pp. 1034-1045,
doi:10.1016/j.infsof.2005.12.020.

[16] M. Shepperd and C. Schofield, “Estimating Software Project Effort
Using Analogies,” Proc. IEEE Transactions on Software Engineering,
IEEE Press, Nov. 1997, pp. 736-743.

[17] NASA60 data set,
http://promise.site.uottawa.ca/SERepository/datasets/cocomonasa.arff
, accessed on Nov. 5, 2009.

[18] NASA93 data set,
http://promise.site.uottawa.ca/SERepository/datasets/cocomonasa_2.a
rff, accessed on Nov. 5, 2009.

[19] A. J. Albrecht and J. E. Gaffney, “Software Function, Source Lines of
Code, and Development Effort Prediction: A Software Science
Validation,” Proc. IEEE Transactions on Software Engineering, IEEE
Press, Nov. 1983, pp. 639-648.

[20] J. E. Matson, B. E. Barrett, and J. M. Mellichamp, “Software
Development Cost Estimation Using Function Points” Proc. IEEE
Transactions on Software Engineering, IEEE Press, Apr. 1994, pp.
275-287.

[21] A. Abran and P. N. Robillard, “Function Points Analysis: An
Empirical Study of Its Measurement Processes” Proc. IEEE
Transactions on Software Engineering, IEEE Press, Dec. 1996, pp.
895-910.

[22] Desharnais data set,
http://promise.site.uottawa.ca/SERepository/datasets/desharnais.arff,
accessed on Nov. 5, 2009.

[23] Stuttgart Neural Network Simulator (Version 4.2), University of
Stuttgart and University of Tubingen.

[24] D. Port and M. Korte, “Comparative Studies of the Model Evaluation
Criterions MMRE and PRED in Software Cost Estimation Research,”
Proc. ACM-IEEE international symposium on Empirical software
engineering and measurement, ACM Press, Oct. 2008, pp. 51-60.

	I. Introduction
	II. Related Work
	III. Proposed Methodology
	A. Data Preparation and Database Selection
	B. Feature Selection
	C. Classification and Functional Approximation
	D. Evaluation

	IV. Experimental Results
	A. Results of effort estimation
	B. Comparative results

	V. Conclusion
	References

