HOMEWORK 1

- 1. Find the number of ways of arranging the 26 letters in the English alphabet in a row such that there are exactly 5 letters between x and y.
- 2. Find the number of odd integers between 3000 and 8000 in which no digit is repeated.
- 3. Evaluate $1 \cdot 1! + 2 \cdot 2! + 3 \cdot 3! + \dots + n \cdot n!$ where $n \in \mathbb{N}$.
- 4. Show that for any $n \in \mathbb{N}$, the number of positive divisors of n^2 is always odd.
- 5. Find the number of (m + n) digit binary sequences with m 0's and n 1's such that no two 1's are adjacent, where $n \le m + 1$.
- 6. A box contains 7 identical white balls and 5 identical black balls. They are to be drawn randomly, one at time without replacement, until the box is empty. Find the probability that the 6th ball drawn is white, while before that exactly 3 black balls are drawn.
- 7. Let $X = \{1, 2, 3, ..., 1000\}$. Find the number of 2-element subsets $\{a, b\}$ of X such that the product $a \cdot b$ is divisible by 5.
- 8. Let $k, n \in \mathbb{N}$. Show that the number of ways to seat kn people around k distinct tables such that there are n people in each table is given by $\frac{(kn)!}{n^k}$.
- 9. Using the numbers 1,2,3,4,5, we can form 5!(=120) 5-digit numbers in which the 5 digits are all distinct. If these numbers are listed in increasing order:

$$12345, 12354, 12435, \dots, 54321, _{120the}$$

- (i) find the position of the number 35421;
- (ii) find the 100th number in the list.
- 10. Let $r, b \in \mathbb{N}$ with $r \leq n$. A permutation $x_1 x_2 \cdots x_{2n}$ of the set $\{1, 2, 3, \dots, 2n\}$ is said to have property P(r) if $|x_i - x_{i+1}| = r$ for at least one *i* in $\{1, 2, \dots, 2n - 1\}$. Show that, for each *n* and *r*, there are more permutations with property P(r) than without.

11. Prove by a combinatorial argument that each of the following numbers is always an integer for each $n \in \mathbb{N}$:

(i)
$$\frac{(6n)!}{5^n 3^{2n} 2^{4n}}$$
, (ii) $\frac{(n!)!}{(n!)^{(n-1)!}}$.

- 12. Let $r, n, k \in \mathbb{N}$ such that $r \ge nk$. Find the number of ways of distributing r identical objects into n distinct boxes so that each box holds at least k objects.
- 13. Given $r, n \in \mathbb{N}$ with $r \ge n$, let L(r, n) denote the number of ways of distributing r distinct objects into n identical boxes so that no box is empty and the objects in each box can be arranged in a row. Find L(r, n) in terms of r and n.
- 14. Find the number of integer solutions to each of the following equations:
- (i) $x_1 + x_2 + x_3 + x_4 = 30$, $2 \le x \le 7$ and $x_i \ge 0$ for each i = 2,3,4.
- (ii) $x_1 + x_2 + x_3 + x_4 \le 2009.$
- (iii) $rx_1 + x_2 + \dots + x_n = kr$, where, $r, n, k \in \mathbb{N}$.
- 15. For $n \ge 4$, let r(n) denote the number of interior regions of a convex *n*-gon divided by all its diagonals if no three diagonals are concurrent within the *n*-gon. For instance, r(4) = 4 and r(5) = 11. Prove that $r(n) = \binom{n}{4} + \binom{n-1}{2}$.
- 16. Let $S = \{1, 2, 3, \dots, 2552\}$. In each of the following cases, find the number of 3element subsets $\{a, b, c\}$ of S satisfying the given condition:
- (i) 3 | (a + b + c);
- (ii) 4 | (a + b + c).
- 17. A set $S = \{a_1, a_2, ..., a_r\}$ of positive integers, where $r \in \mathbb{N}$ and $a_1 < a_2 < \cdots < a_r$, is said to be *m*-saperated $(m \in \mathbb{N})$ if $a_i - a_{i-1} \ge m$, for each i = 2, 3, ..., r. Let $X = \{1, 2, ..., n\}$. Find the number of *r*-element subsets of X which are m-separated, where $0 \le r \le n - (m - 1)(r - 1)$.