HOMEWORK 1

1. Find the number of ways of arranging the 26 letters in the English alphabet in a row such that there are exactly 5 letters between x and y.
2. Find the number of odd integers between 3000 and 8000 in which no digit is repeated.
3. Evaluate $1 \cdot 1!+2 \cdot 2!+3 \cdot 3!+\cdots+n \cdot n$! where $n \in \mathbb{N}$.
4. Show that for any $n \in \mathbb{N}$, the number of positive divisors of n^{2} is always odd.
5. Find the number of $(m+n)$ - digit binary sequences with $m 0$'s and $n 1$'s such that no two 1 's are adjacent, where $n \leq m+1$.
6. A box contains 7 identical white balls and 5 identical black balls. They are to be drawn randomly, one at time without replacement, until the box is empty. Find the probability that the $6^{\text {th }}$ ball drawn is white, while before that exactly 3 black balls are drawn.
7. Let $X=\{1,2,3, \ldots, 1000\}$. Find the number of 2 -element subsets $\{a, b\}$ of X such that the product $a \cdot b$ is divisible by 5 .
8. Let $k, n \in \mathbb{N}$. Show that the number of ways to seat $k n$ people around k distinct tables such that there are n people in each table is given by $\frac{(k n)!}{n^{k}}$.
9. Using the numbers $1,2,3,4,5$, we can form $5!(=120) 5$-digit numbers in which the 5 digits are all distinct. If these numbers are listed in increasing order:

$$
\underset{1 s t}{12345}, \underset{2 n d}{12354}, \underset{3 r d}{12435}, \ldots, \underset{120 t h e}{54321,}
$$

(i) find the position of the number 35421;
(ii) find the $100^{\text {th }}$ number in the list.
10. Let $r, b \in \mathbb{N}$ with $r \leq n$. A permutation $x_{1} x_{2} \cdots x_{2 n}$ of the set $\{1,2,3, \ldots, 2 n\}$ is said to have property $P(r)$ if $\left|x_{i}-x_{i+1}\right|=r$ for at least one i in $\{1,2, \ldots, 2 n-1\}$. Show that, for each n and r, there are more permutations with property $P(r)$ than without.
11. Prove by a combinatorial argument that each of the following numbers is always an integer for each $n \in \mathbb{N}$:
(i) $\frac{(6 n)!}{5^{n} 3^{2 n} 2^{4 n}}$,
(ii) $\frac{(n!)!}{(n!)^{(n-1)!}}$.
12. Let $r, n, k \in \mathbb{N}$ such that $r \geq n k$. Find the number of ways of distributing r identical objects into n distinct boxes so that each box holds at least k objects.
13. Given $r, n \in \mathbb{N}$ with $r \geq n$, let $L(r, n)$ denote the number of ways of distributing r distinct objects into n identical boxes so that no box is empty and the objects in each box can be arranged in a row. Find $L(r, n)$ in terms of r and n.
14. Find the number of integer solutions to each of the following equations:
(i) $x_{1}+x_{2}+x_{3}+x_{4}=30, \quad 2 \leq x \leq 7$ and $x_{i} \geq 0$ for each $i=2,3,4$.
(ii) $x_{1}+x_{2}+x_{3}+x_{4} \leq 2009$.
(iii) $r x_{1}+x_{2}+\cdots+x_{n}=k r$, where, $r, n, k \in \mathbb{N}$.

15 . For $n \geq 4$, let $r(n)$ denote the number of interior regions of a convex n-gon divided by all its diagonals if no three diagonals are concurrent within the n-gon. For instance, $r(4)=4$ and $r(5)=11$. Prove that $r(n)=\binom{n}{4}+\binom{n-1}{2}$.
16. Let $S=\{1,2,3, \ldots, 2552\}$. In each of the following cases, find the number of 3element subsets $\{a, b, c\}$ of S satisfying the given condition:
(i) $3 \mid(a+b+c)$;
(ii) $4 \mid(a+b+c)$.
17. A set $S=\left\{a_{1}, a_{2}, \ldots, a_{r}\right\}$ of positive integers, where $r \in \mathbb{N}$ and $a_{1}<a_{2}<\cdots<a_{r}$, is said to be m-saperated $(m \in \mathbb{N})$ if $a_{i}-a_{i-1} \geq m$, for each $i=2,3, \ldots, r$. Let $X=\{1,2, \ldots, n\}$. Find the number of r-element subsets of X which are m - separated, where $0 \leq r \leq n-(m-1)(r-1)$.

